The subcarrier allocation problem in cognitive radio(CR)networks with multi-user orthogonal frequency-division multiplexing(OFDM)and distributed antenna is analyzed and modeled for the flat fading channel and the ...The subcarrier allocation problem in cognitive radio(CR)networks with multi-user orthogonal frequency-division multiplexing(OFDM)and distributed antenna is analyzed and modeled for the flat fading channel and the frequency selective channel,where the constraint on the secondary user(SU)to protect the primary user(PU)is that the total throughput of each PU must be above the given threshold instead of the "interference temperature".According to the features of different types of channels,the optimal subcarrier allocation schemes are proposed to pursue efficiency(or maximal throughput),using the branch and bound algorithm and the 0-1 implicit enumeration algorithm.Furthermore,considering the tradeoff between efficiency and fairness,the optimal subcarrier allocation schemes with fairness are proposed in different fading channels,using the pegging algorithm.Extensive simulation results illustrate the significant performance improvement of the proposed subcarrier allocation schemes compared with the existing ones in different scenarios.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
There are various analyses for a solar system with the dish-Stirling technology.One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the...There are various analyses for a solar system with the dish-Stirling technology.One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the process time.In this study,the convection and radiation heat transfer losses from collector surface,the conduction heat transfer between hot and cold cylinders,and cold side heat exchanger have been considered.During this investigation,four objective functions have been optimized simultaneously,including power,efficiency,entropy,and economic factors.In addition to the fourobjective optimization,three-objective,two-objective,and single-objective optimizations have been done on the dish-Stirling model.The algorithm of multi-objective particle swarm optimization(MO P S O)with post-expression of preferences is used for multi-objective optimizations while the branch and bound algorithm with pre-expression of preferences is used for single-objective and multi-objective optimizations.In the case of multi-objective optimizations with post-expression of preferences,Pareto optimal front are obtained,afterward by implementing the fuzzy,LINMAP,and TOPSIS decision making algorithms,the single optimum results can be achieved.The comparison of the results shows the benefits of MOPSO in optimizing dish Stirling finite time thermodynamic equations.展开更多
This paper focuses on multi-channel Cooperative Spectrum Sensing (CSS) where Secondary Users (SUs) are assigned to cooperatively sense multiple channels simultaneously. A multi-channel CSS optimization problem of join...This paper focuses on multi-channel Cooperative Spectrum Sensing (CSS) where Secondary Users (SUs) are assigned to cooperatively sense multiple channels simultaneously. A multi-channel CSS optimization problem of joint spectrum sensing and SU assignment based on data fusion rule is formulated, which maximizes the total throughput of the Cognitive Radio Network (CRN) subject to the constraints of probabilities of detection and false alarm. To address the optimization problem, a Branch and Bound (BnB) algorithm and a greedy algorithm are proposed to obtain the optimal solutions. Simulation results are presented to demonstrate the effectiveness of our proposed algorithms and show that the throughput improvement is achieved through the joint design. It is also shown that the greedy algorithm with a low complexity achieves the comparable performance to the exhaustive algorithm.展开更多
This paper deals with the problem of project scheduling subject to multiple execution modes with non-renewable resources, and a model that handles some of monetary issues in real world applications.The objective is to...This paper deals with the problem of project scheduling subject to multiple execution modes with non-renewable resources, and a model that handles some of monetary issues in real world applications.The objective is to schedule the activities to maximize the expected net present value(NPV) of the project, taking into account the activity costs, the activity durations, and the cash flows generated by successfully completing an activity.Owing to the combinatorial nature of this problem, the current study develops a hybrid of branch-and-bound procedure and memetic algorithm to enhance both mode assignment and activity scheduling.Modifications for the makespan minimization problem have been made through a set of benchmark problem instances.Algorithmic performance is rated on the maximization of the project NPV and computational results show that the two-phase hybrid metaheuristic performs competitively for all instances of different problem sizes.展开更多
基金The National Natural Science Foundation of China(No.60832009)Beijing Municipal Natural Science Foundation(No.4102044)National Major Science & Technology Project(No.2009ZX03003-003-01)
文摘The subcarrier allocation problem in cognitive radio(CR)networks with multi-user orthogonal frequency-division multiplexing(OFDM)and distributed antenna is analyzed and modeled for the flat fading channel and the frequency selective channel,where the constraint on the secondary user(SU)to protect the primary user(PU)is that the total throughput of each PU must be above the given threshold instead of the "interference temperature".According to the features of different types of channels,the optimal subcarrier allocation schemes are proposed to pursue efficiency(or maximal throughput),using the branch and bound algorithm and the 0-1 implicit enumeration algorithm.Furthermore,considering the tradeoff between efficiency and fairness,the optimal subcarrier allocation schemes with fairness are proposed in different fading channels,using the pegging algorithm.Extensive simulation results illustrate the significant performance improvement of the proposed subcarrier allocation schemes compared with the existing ones in different scenarios.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
基金This research was supported by the Scientific Research Foundation of Wuhan University of Technology(No.40120237)the ESI Discipline Promotion Foundation of WUT(No.35400664).
文摘There are various analyses for a solar system with the dish-Stirling technology.One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the process time.In this study,the convection and radiation heat transfer losses from collector surface,the conduction heat transfer between hot and cold cylinders,and cold side heat exchanger have been considered.During this investigation,four objective functions have been optimized simultaneously,including power,efficiency,entropy,and economic factors.In addition to the fourobjective optimization,three-objective,two-objective,and single-objective optimizations have been done on the dish-Stirling model.The algorithm of multi-objective particle swarm optimization(MO P S O)with post-expression of preferences is used for multi-objective optimizations while the branch and bound algorithm with pre-expression of preferences is used for single-objective and multi-objective optimizations.In the case of multi-objective optimizations with post-expression of preferences,Pareto optimal front are obtained,afterward by implementing the fuzzy,LINMAP,and TOPSIS decision making algorithms,the single optimum results can be achieved.The comparison of the results shows the benefits of MOPSO in optimizing dish Stirling finite time thermodynamic equations.
基金Supported by the National Natural Science Foundation of China (No. 61271169)National Basic Research Program (973 Program) of China (No. 2009CB320405)Nation Grand Special Science and Technology Project of China under Grant (No. 2010ZX03006-002, 2010ZX03002-008-03)
文摘This paper focuses on multi-channel Cooperative Spectrum Sensing (CSS) where Secondary Users (SUs) are assigned to cooperatively sense multiple channels simultaneously. A multi-channel CSS optimization problem of joint spectrum sensing and SU assignment based on data fusion rule is formulated, which maximizes the total throughput of the Cognitive Radio Network (CRN) subject to the constraints of probabilities of detection and false alarm. To address the optimization problem, a Branch and Bound (BnB) algorithm and a greedy algorithm are proposed to obtain the optimal solutions. Simulation results are presented to demonstrate the effectiveness of our proposed algorithms and show that the throughput improvement is achieved through the joint design. It is also shown that the greedy algorithm with a low complexity achieves the comparable performance to the exhaustive algorithm.
文摘This paper deals with the problem of project scheduling subject to multiple execution modes with non-renewable resources, and a model that handles some of monetary issues in real world applications.The objective is to schedule the activities to maximize the expected net present value(NPV) of the project, taking into account the activity costs, the activity durations, and the cash flows generated by successfully completing an activity.Owing to the combinatorial nature of this problem, the current study develops a hybrid of branch-and-bound procedure and memetic algorithm to enhance both mode assignment and activity scheduling.Modifications for the makespan minimization problem have been made through a set of benchmark problem instances.Algorithmic performance is rated on the maximization of the project NPV and computational results show that the two-phase hybrid metaheuristic performs competitively for all instances of different problem sizes.