The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) ...The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
Convolutional neural networks (CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore...Convolutional neural networks (CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore, the model needs to be retrained for different test video sequences. We propose a branch-activated multi-domain convolutional neural network (BAMDCNN). In contrast to most existing trackers based on CNNs which require frequent online training, BAMDCNN only needs offine training and online fine-tuning. Specifically, BAMDCNN exploits category-specific features that are more robust against variations. To allow for learning category-specific information, we introduce a group algorithm and a branch activation method. Experimental results on challenging benchmark show that the proposed algorithm outperforms other state-of-the-art methods. What's more, compared with CNN based trackers, BAMDCNN increases tracking speed.展开更多
文摘The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
基金the Innovation Action Plan Foundation of Shanghai(No.16511101200)
文摘Convolutional neural networks (CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore, the model needs to be retrained for different test video sequences. We propose a branch-activated multi-domain convolutional neural network (BAMDCNN). In contrast to most existing trackers based on CNNs which require frequent online training, BAMDCNN only needs offine training and online fine-tuning. Specifically, BAMDCNN exploits category-specific features that are more robust against variations. To allow for learning category-specific information, we introduce a group algorithm and a branch activation method. Experimental results on challenging benchmark show that the proposed algorithm outperforms other state-of-the-art methods. What's more, compared with CNN based trackers, BAMDCNN increases tracking speed.