A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such ...Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such as vortex lines are required to generate MZMs.Here,we observe the robust edge states along the surface steps of CaKFe_(4)As_(4).Remarkably,the tunneling spectra show a sharp zero-bias peak(ZBP)with multiple integerquantized states at the step edge under zero magnetic field.We propose that the increasing hole doping around step edges may drive the local superconductivity into a state with possible spontaneous time-reversal symmetry breaking.Consequently,the ZBP can be interpreted as an MZM in an effective vortex in the superconducting topological surface state by proximity to the center of a tri-junction with different superconducting order parameters.Our results provide new insights into the interplay between topology and unconventional superconductivity,and pave a new path to generate MZMs without magnetic field.展开更多
Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,f...Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both.Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia,a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China.Demographic and migration hypotheses were tested using coalescent-based approaches.Limited historical gene flow was observed between the western and eastern groups of P.rotundifolia,but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line,manifesting in clear admixture and high genetic diversity in the central group.Wind-borne pollen and seeds may have facilitated the dispersal of P.rotundifolia following prevalent northwest winds in the spring.We also found that the Hengduan Mountains,where multiple genetic barriers were detected,acted on the whole as a barrier between the western and eastern groups of P.rotundifolia.Ecological niche modeling suggested that P.rotundifolia has undergone range expansion since the last glacial maximum,and demographic reconstruction indicated an earlier population expansion around 600 Ka.The phylogeographic pattern of P.rotundifolia reflects the interplay of biological traits,wind patterns,barriers,niche differentiation,and Quaternary climate history.This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.展开更多
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t...Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports.展开更多
China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The su...China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The success of these athletes across various disciplines demonstrates the country’s efforts to expand its athletic prowess while also marks a new chapter for Chinese sportsmanship on the international stage.展开更多
Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of pr...Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of previous exhibitions at ITM 2022 and ITMA Milan 2023,Smartex emerges stronger than ever,presenting its complete Smartex System tailored to transform textile manufacturing.展开更多
Organic solar cells(OSCs) especially non-fullerene OSCs(NF-OSCs) are promising to become the next-generation of commercial applications and have received great attention from many researchers due to their typical adva...Organic solar cells(OSCs) especially non-fullerene OSCs(NF-OSCs) are promising to become the next-generation of commercial applications and have received great attention from many researchers due to their typical advantages of low cost,light weight,and flexibility [1,2].展开更多
When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We deve...When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.展开更多
This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A ...This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.展开更多
To restore the distribution systems in emergency states with the minimum load shedding, a novel Tabu search approach is put forward. The set of tripped switches is used as candidate solution. Some virtual tripped node...To restore the distribution systems in emergency states with the minimum load shedding, a novel Tabu search approach is put forward. The set of tripped switches is used as candidate solution. Some virtual tripped nodes are defined at the ends of the terminal nodes and by the source nodes. The neighborhood searching is committed by moving a tripped switch to the adjacent node of its upper stream and down stream, respectively. A Tabu list is formed for the tripped switches. The index is to energize as much as possible loads with as less as possible operated times. The electrical limitations and the voltage criterions are used as constrictions. The global aspiration criterion is adopted. An example is given, which shows that the proposed approach is feasible and can deal with complicated indexes.展开更多
The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important...The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.展开更多
This paper proposes an equation to calculate breaking wave induced wave set-up and set-down along reef flat. The mathematical equation was derived based on the theory of radiation stress and the conservation of wave e...This paper proposes an equation to calculate breaking wave induced wave set-up and set-down along reef flat. The mathematical equation was derived based on the theory of radiation stress and the conservation of wave energy. The equation is primarily determined by several physical variables including the breaking wave index, the stable wave index, the attenuation coefficient of wave energy flux, and the flow velocity in the re-stabilization zone. A series of laboratory experiments were carried out to calibrate the theoretical equations. Specifically, the breaking wave index,the stable wave index, and the velocity over the reef flat were measured in the laboratory. The attenuation coefficient of wave energy flux in our theoretical equation was determined by calibration by comparing with the laboratory measured wave height. Furthermore, it has been put forward that the velocity based on cnoidal wave theory could be used to determine the velocity over the reef flat if there is no velocity measurement available. Overall, the proposed equation can provide satisfactory prediction of wave set-up and set-down along the reef flat.展开更多
To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of wa...To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of waterjet called unsubmerged cavitating abrasive waterjet(UCAWJ) is thus produced. The rock breaking performance of UCAWJ was compared with submerged cavitating abrasive waterjet(SCAWJ)and unsubmerged abrasive waterjet(UAWJ) by impinging sandstone specimens. Moreover, the effects of jet pressure, standoff distance, abrasive flow rate and concentration were studied by evaluating the specific energy consumption, and the area, depth, and mass loss of the eroded specimen. The results show that the artificially generated submerged environment in UCAWJ is able to enhance the rock breaking performance under the same operating parameters. Furthermore, the rock breaking performance of UCAWJ is much better at higher jet pressures and smaller standoff distances when compared with UAWJ. The greatest rock breaking ability of UCAWJ appears at jet pressure of 50 MPa and standoff distance of 32 mm, with the mass loss of sandstone increased by 370.6% and the energy dissipation decreased by 75.8%. In addition, under the experimental conditions the optimal abrasive flow rate and concentration are 76.5 m L/min and 3%, respectively.展开更多
Polymer gels have been accepted as a useful tool to address many sealing operations such as drilling and completion,well stimulation,wellbore integrity,water and gas shutoff,etc.Previously,we developed an ultra-high s...Polymer gels have been accepted as a useful tool to address many sealing operations such as drilling and completion,well stimulation,wellbore integrity,water and gas shutoff,etc.Previously,we developed an ultra-high strength gel(USGel)for medium to ultra-low temperature reservoirs.However,the removal of USGel is a difficult problem for most temporary plugging operations.This paper first provides new insights into the mechanism of USGel,where multistage network structure and physical entanglement are the main reasons for USGel possessing ultra-high strength.Then the effects of acid breakers,encapsulated breakers,and oxidation breakers(including H_(2)O_(2),Na_(2)S_(2)O_(8),Ca(ClO)_(2),H_(2)O_(2)+NaOH,Na_(2)S_(2)O_(8)+NaOH,and Ca(ClO)_(2)+NaOH)were evaluated.The effects of component concentration and temperature on the breaking solution were studied,and the corrosion performance,physical simulation and formation damage tests of the breaking solution were carried out.The final formulation of 2%-4%NaOH+4.5%-6%H_(2)O_(2) breaking solution was determined,which can make USGel completely turn into water at 35e105C.The combinations of“acid t breaking solution”,“acid+encapsulated breaker”and“encapsulated breaker+breaking solution”were evaluated for breaking effect.The acid gradually reduced the volume of USGel,which increased the contact area between breaking solution and USGel,and the effect of“4%acid+breaking solution”was 23 times higher than that of breaking solution alone at 35C.However,the acid significantly reduced the strength of USGel.This paper provides new insights into the breaking of high-strength gels with complex network structures.展开更多
This study uses the dynamic conditional correlation to investigate how technology subsector stocks interact with financial assets in the face of economic and financial uncertainty.Our results suggest that structural b...This study uses the dynamic conditional correlation to investigate how technology subsector stocks interact with financial assets in the face of economic and financial uncertainty.Our results suggest that structural breaks have diverse effects on financial asset connectedness and that the level of bond linkage increases when the trend breaks.We see a growing co-movement between the technology sector and major financial assets when uncertainty is considered.Overall,our findings indicate that the connectedness response varies depending on the type of uncertainty shock.展开更多
The sixth China International Import Expo(CIIE),the world’s first national-level import-themed expo,saw a total of 78.41 billion U.S.dollars’worth of tentative deals reached for one-year purchases of goods and servi...The sixth China International Import Expo(CIIE),the world’s first national-level import-themed expo,saw a total of 78.41 billion U.S.dollars’worth of tentative deals reached for one-year purchases of goods and services,setting a record high.展开更多
In the 21st Century,the native culture of Thailand has become a major inspiration for production of Thai movies,which have boomed,especially in four distinct genres:Thai epics,Muay Thai,horror,and teen movies.The firs...In the 21st Century,the native culture of Thailand has become a major inspiration for production of Thai movies,which have boomed,especially in four distinct genres:Thai epics,Muay Thai,horror,and teen movies.The first three genres are introspective and focus on the local characteristics of the nation by telling stories of Thai history,elaborating on the techniques of Muay Thai,and highlighting local spiritual beliefs.However,Thai teen movies are different because the genre tends to deploy internationalized narratives as part of the country’s efforts to build a Thai cultural identity that permeates global screens.展开更多
大学生科研训练(Student Research Training,SRT)计划是提高大学生科研能力的重要途径之一,也是培养国家理科基地创新性人才的重要举措。为了解决在实施SRT过程中出现的老师与学生交流不足的问题,南京农业大学引入了以Coffee Break...大学生科研训练(Student Research Training,SRT)计划是提高大学生科研能力的重要途径之一,也是培养国家理科基地创新性人才的重要举措。为了解决在实施SRT过程中出现的老师与学生交流不足的问题,南京农业大学引入了以Coffee Break和Seminar为主体的交流模式。经过近四年的实践探索,该模式有力地完善和保障了SRT的顺利实施,大大促进了创新型人才的培养。文章对此进行了详细的阐述。展开更多
We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital i...We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital information about past findings and recent discoveries is provided in a single treatment.Special attention is paid to those works where successful synthetic routes to as-yet unknown phenomena were identified.Such landmark results are analyzed,while smoothly blending them with a history of the field and introducing possible categorizations of the prevalent dynamics.Although no classification is perfect,and it is hard to distillate general properties out of specific observations or realizations,two possible ways to interpret the existing results are defined according to the type of forcing or the emerging(ensuing)regime of motion.In particular,first results concerning the case where vibrations and gravity are concurrent(vertical shaking)are examined,then the companion situation with vibrations perpendicular to gravity(horizontal shaking)is described.Universality classes are introduced as follows:(1)Regimes where sand self-organizes leading to highly regular geometrical“pulsating”patterns(thin layer case);(2)Regimes where the material undergoes“fluidization”and develops an internal multicellular convective state(tick layers case);(3)Regimes where the free interface separating the sand from the overlying gas changes inclination or develops a kind a patterned configuration consisting of stable valleys and mountains or travelling waves;(4)Regimes where segregation is produced,i.e.,particles of a given size tend to be separated from the other grains(deep containers).Where possible,an analogy or parallelism is drawn with respect to the companion field of fluid-dynamics for which the assumption of“continuum”can be applied.展开更多
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0308500)the National Natural Science Foundation of China(Grant Nos.62488201,52072401,11888101,12234016,and 12174317)+4 种基金the Chinese Academy of Sciences(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)the New Cornerstone Science Foundationthe China Postdoctoral Science Foundation(Grant No.2022M723111)the Fellowship of China National Postdoctoral Program for Innovative Talents(Grant No.BX20230358)。
文摘Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such as vortex lines are required to generate MZMs.Here,we observe the robust edge states along the surface steps of CaKFe_(4)As_(4).Remarkably,the tunneling spectra show a sharp zero-bias peak(ZBP)with multiple integerquantized states at the step edge under zero magnetic field.We propose that the increasing hole doping around step edges may drive the local superconductivity into a state with possible spontaneous time-reversal symmetry breaking.Consequently,the ZBP can be interpreted as an MZM in an effective vortex in the superconducting topological surface state by proximity to the center of a tri-junction with different superconducting order parameters.Our results provide new insights into the interplay between topology and unconventional superconductivity,and pave a new path to generate MZMs without magnetic field.
基金funded by the National Natural Science Foundation of China(grants 41571054 and 31622015)the National Basic Research Program of China(grant 2014CB954100)+1 种基金Sichuan University(Fundamental Research Funds for the Central Universities,SCU2021D006 and SCU2022D003Institutional Research Funds,2021SCUNL102).
文摘Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both.Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia,a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China.Demographic and migration hypotheses were tested using coalescent-based approaches.Limited historical gene flow was observed between the western and eastern groups of P.rotundifolia,but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line,manifesting in clear admixture and high genetic diversity in the central group.Wind-borne pollen and seeds may have facilitated the dispersal of P.rotundifolia following prevalent northwest winds in the spring.We also found that the Hengduan Mountains,where multiple genetic barriers were detected,acted on the whole as a barrier between the western and eastern groups of P.rotundifolia.Ecological niche modeling suggested that P.rotundifolia has undergone range expansion since the last glacial maximum,and demographic reconstruction indicated an earlier population expansion around 600 Ka.The phylogeographic pattern of P.rotundifolia reflects the interplay of biological traits,wind patterns,barriers,niche differentiation,and Quaternary climate history.This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.
基金supported by the Vietnam National University,Ho Chi Minh City (Grant No.TX2024-50-01)partial supported by National Natural Science Foundation of China (Grant No.22209186)。
文摘Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports.
文摘China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The success of these athletes across various disciplines demonstrates the country’s efforts to expand its athletic prowess while also marks a new chapter for Chinese sportsmanship on the international stage.
文摘Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of previous exhibitions at ITM 2022 and ITMA Milan 2023,Smartex emerges stronger than ever,presenting its complete Smartex System tailored to transform textile manufacturing.
基金the Natural Science Foundation of China (52172048, 52103221, 51873172, 22205130, 12175298)the Shandon Provincial Natural Science Foundation of China (ZR2021QB024, ZR2021QB179, ZR2021ZD06)+2 种基金the Guangdong Natural Science Foundation of China (2023A1515012323, 2023A1515010943, 2022A1515110643)the National Key Research and Development Program of China (2022YFB4200400) funded by MOST of Chinathe Fundamental Research Funds of Shandong University from China。
文摘Organic solar cells(OSCs) especially non-fullerene OSCs(NF-OSCs) are promising to become the next-generation of commercial applications and have received great attention from many researchers due to their typical advantages of low cost,light weight,and flexibility [1,2].
基金supported by the State Key Laboratory Open Fund(No.HKLBEF202004)the Natural Science Foundation of Jiangsu Province(No.BK20201313)+2 种基金the Key Program of National Natural Science Foundation of China(No.51934007)the Major Scientific and Technological Innovation Program in Shandong Province(No.2019JZZY020505)the National Key Research and Development Program of China(No.2022YFC3004700)。
文摘When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.
基金supported by the National Natural Science Foundation of China(Grant No.42275025).
文摘This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.
文摘To restore the distribution systems in emergency states with the minimum load shedding, a novel Tabu search approach is put forward. The set of tripped switches is used as candidate solution. Some virtual tripped nodes are defined at the ends of the terminal nodes and by the source nodes. The neighborhood searching is committed by moving a tripped switch to the adjacent node of its upper stream and down stream, respectively. A Tabu list is formed for the tripped switches. The index is to energize as much as possible loads with as less as possible operated times. The electrical limitations and the voltage criterions are used as constrictions. The global aspiration criterion is adopted. An example is given, which shows that the proposed approach is feasible and can deal with complicated indexes.
基金Supported by National Natural Science Foundation of China(Grant Nos.51608521,51809264)Beijing Municipal Major Achievements Transformation and Industrialization Projects of Central Universities(Grant No.ZDZH20141141301)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYLJ06).
文摘The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.
基金jointly supported by the National Key R&D Program of China (Grant No. 2018YFC0407503)the National Natural Science Foundation of China (Grant No. 51779149)+2 种基金the Scientific Research Project of Yangtze-to-Huaihe Water Diversion Project (Grant No. YJJHYJJC-ZX-20191106220)the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Grant Nos. Y220002, Y219012 and Y220013)the Water Conservancy Science and Technology Project of Jiangsu Province (Grant No. 2019009)。
文摘This paper proposes an equation to calculate breaking wave induced wave set-up and set-down along reef flat. The mathematical equation was derived based on the theory of radiation stress and the conservation of wave energy. The equation is primarily determined by several physical variables including the breaking wave index, the stable wave index, the attenuation coefficient of wave energy flux, and the flow velocity in the re-stabilization zone. A series of laboratory experiments were carried out to calibrate the theoretical equations. Specifically, the breaking wave index,the stable wave index, and the velocity over the reef flat were measured in the laboratory. The attenuation coefficient of wave energy flux in our theoretical equation was determined by calibration by comparing with the laboratory measured wave height. Furthermore, it has been put forward that the velocity based on cnoidal wave theory could be used to determine the velocity over the reef flat if there is no velocity measurement available. Overall, the proposed equation can provide satisfactory prediction of wave set-up and set-down along the reef flat.
基金financially supported by the National Natural Science Foundation of China (Nos. 52175245 and 52274093)the Natural Science Foundation of Hubei Province (No. 2021CFB462)。
文摘To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of waterjet called unsubmerged cavitating abrasive waterjet(UCAWJ) is thus produced. The rock breaking performance of UCAWJ was compared with submerged cavitating abrasive waterjet(SCAWJ)and unsubmerged abrasive waterjet(UAWJ) by impinging sandstone specimens. Moreover, the effects of jet pressure, standoff distance, abrasive flow rate and concentration were studied by evaluating the specific energy consumption, and the area, depth, and mass loss of the eroded specimen. The results show that the artificially generated submerged environment in UCAWJ is able to enhance the rock breaking performance under the same operating parameters. Furthermore, the rock breaking performance of UCAWJ is much better at higher jet pressures and smaller standoff distances when compared with UAWJ. The greatest rock breaking ability of UCAWJ appears at jet pressure of 50 MPa and standoff distance of 32 mm, with the mass loss of sandstone increased by 370.6% and the energy dissipation decreased by 75.8%. In addition, under the experimental conditions the optimal abrasive flow rate and concentration are 76.5 m L/min and 3%, respectively.
基金supported by Fok Ying-Tong Education Foundation(Grant No.171043)Sichuan Science and Technology Program(Award No.2020YFQ0036).
文摘Polymer gels have been accepted as a useful tool to address many sealing operations such as drilling and completion,well stimulation,wellbore integrity,water and gas shutoff,etc.Previously,we developed an ultra-high strength gel(USGel)for medium to ultra-low temperature reservoirs.However,the removal of USGel is a difficult problem for most temporary plugging operations.This paper first provides new insights into the mechanism of USGel,where multistage network structure and physical entanglement are the main reasons for USGel possessing ultra-high strength.Then the effects of acid breakers,encapsulated breakers,and oxidation breakers(including H_(2)O_(2),Na_(2)S_(2)O_(8),Ca(ClO)_(2),H_(2)O_(2)+NaOH,Na_(2)S_(2)O_(8)+NaOH,and Ca(ClO)_(2)+NaOH)were evaluated.The effects of component concentration and temperature on the breaking solution were studied,and the corrosion performance,physical simulation and formation damage tests of the breaking solution were carried out.The final formulation of 2%-4%NaOH+4.5%-6%H_(2)O_(2) breaking solution was determined,which can make USGel completely turn into water at 35e105C.The combinations of“acid t breaking solution”,“acid+encapsulated breaker”and“encapsulated breaker+breaking solution”were evaluated for breaking effect.The acid gradually reduced the volume of USGel,which increased the contact area between breaking solution and USGel,and the effect of“4%acid+breaking solution”was 23 times higher than that of breaking solution alone at 35C.However,the acid significantly reduced the strength of USGel.This paper provides new insights into the breaking of high-strength gels with complex network structures.
基金supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2022S1A5A2A01038422).
文摘This study uses the dynamic conditional correlation to investigate how technology subsector stocks interact with financial assets in the face of economic and financial uncertainty.Our results suggest that structural breaks have diverse effects on financial asset connectedness and that the level of bond linkage increases when the trend breaks.We see a growing co-movement between the technology sector and major financial assets when uncertainty is considered.Overall,our findings indicate that the connectedness response varies depending on the type of uncertainty shock.
文摘The sixth China International Import Expo(CIIE),the world’s first national-level import-themed expo,saw a total of 78.41 billion U.S.dollars’worth of tentative deals reached for one-year purchases of goods and services,setting a record high.
文摘In the 21st Century,the native culture of Thailand has become a major inspiration for production of Thai movies,which have boomed,especially in four distinct genres:Thai epics,Muay Thai,horror,and teen movies.The first three genres are introspective and focus on the local characteristics of the nation by telling stories of Thai history,elaborating on the techniques of Muay Thai,and highlighting local spiritual beliefs.However,Thai teen movies are different because the genre tends to deploy internationalized narratives as part of the country’s efforts to build a Thai cultural identity that permeates global screens.
文摘大学生科研训练(Student Research Training,SRT)计划是提高大学生科研能力的重要途径之一,也是培养国家理科基地创新性人才的重要举措。为了解决在实施SRT过程中出现的老师与学生交流不足的问题,南京农业大学引入了以Coffee Break和Seminar为主体的交流模式。经过近四年的实践探索,该模式有力地完善和保障了SRT的顺利实施,大大促进了创新型人才的培养。文章对此进行了详细的阐述。
文摘We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital information about past findings and recent discoveries is provided in a single treatment.Special attention is paid to those works where successful synthetic routes to as-yet unknown phenomena were identified.Such landmark results are analyzed,while smoothly blending them with a history of the field and introducing possible categorizations of the prevalent dynamics.Although no classification is perfect,and it is hard to distillate general properties out of specific observations or realizations,two possible ways to interpret the existing results are defined according to the type of forcing or the emerging(ensuing)regime of motion.In particular,first results concerning the case where vibrations and gravity are concurrent(vertical shaking)are examined,then the companion situation with vibrations perpendicular to gravity(horizontal shaking)is described.Universality classes are introduced as follows:(1)Regimes where sand self-organizes leading to highly regular geometrical“pulsating”patterns(thin layer case);(2)Regimes where the material undergoes“fluidization”and develops an internal multicellular convective state(tick layers case);(3)Regimes where the free interface separating the sand from the overlying gas changes inclination or develops a kind a patterned configuration consisting of stable valleys and mountains or travelling waves;(4)Regimes where segregation is produced,i.e.,particles of a given size tend to be separated from the other grains(deep containers).Where possible,an analogy or parallelism is drawn with respect to the companion field of fluid-dynamics for which the assumption of“continuum”can be applied.