Presence of higher breast density(BD)and persistence over time are risk factors for breast cancer.A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segme...Presence of higher breast density(BD)and persistence over time are risk factors for breast cancer.A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segmentation is desirable.In this study,we aimed to develop a highly reproducible and accurate whole-breast segmentation algorithm for the generation of reproducible BD measures.Three datasets of volunteers from two clinical trials were included.Breast MR images were acquired on 3T Siemens Biograph mMR,Prisma,and Skyra using 3D Cartesian six-echo GRE sequences with a fat-water separation technique.Two whole-breast segmentation strategies,utiliz-ing image registration and 3D U-Net,were developed.Manual segmentation was performed.A task-based analysis was performed:a previously developed MR-based BD measure,MagDensity,was calculated and assessed using automated and manual segmentation.The mean squared error(MSE)and intraclass correlation coefficient(ICC)between MagDensity were evaluated using the manual segmentation as a reference.The test-retest reproducibility of MagDensity derived from different breast segmentation methods was assessed using the difference between the test and retest measures(Δ_(2-1)),MSE,and ICC.The results showed that MagDensity derived by the registration and deep learning segmentation methods exhibited high concordance with manual segmentation,with ICCs of 0.986(95%CI:0.974-0.993)and 0.983(95%CI:0.961-0.992),respectively.For test-retest analysis,MagDensity derived using the regis-tration algorithm achieved the smallest MSE of 0.370 and highest ICC of 0.993(95%CI:0.982-0.997)when compared to other segmentation methods.In conclusion,the proposed registration and deep learning whole-breast segmentation methods are accurate and reliable for estimating BD.Both methods outperformed a previously developed algorithm and manual segmentation in the test-retest assessment,with the registration exhibiting superior performance for highly reproducible BD measurements.展开更多
Granulomatous mastitis, also called granulomatous lobular mastitis, is a benign pathology of the mammary gland characterized by chronic inflammation of the gland tissue, which becomes erythematous, manifesting itself ...Granulomatous mastitis, also called granulomatous lobular mastitis, is a benign pathology of the mammary gland characterized by chronic inflammation of the gland tissue, which becomes erythematous, manifesting itself as a palpable and painful mass on physical examination, sometimes it can be accompanied by abscesses. The following case is a 45-year-old Guatemalan female, with a history of increased volume in the left breast, compromising the upper quadrants. A mammogram was performed, followed by breast ultrasound;the diagnosis was confirmed by histology. The treatment offered was surgery with image controls every six months.展开更多
基金This work is partially supported by the National Institute of Health R03CA223052The sulindac trial was supported by R01CA161534The metformin trial was supported by R01CA172444 and P30CA023074。
文摘Presence of higher breast density(BD)and persistence over time are risk factors for breast cancer.A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segmentation is desirable.In this study,we aimed to develop a highly reproducible and accurate whole-breast segmentation algorithm for the generation of reproducible BD measures.Three datasets of volunteers from two clinical trials were included.Breast MR images were acquired on 3T Siemens Biograph mMR,Prisma,and Skyra using 3D Cartesian six-echo GRE sequences with a fat-water separation technique.Two whole-breast segmentation strategies,utiliz-ing image registration and 3D U-Net,were developed.Manual segmentation was performed.A task-based analysis was performed:a previously developed MR-based BD measure,MagDensity,was calculated and assessed using automated and manual segmentation.The mean squared error(MSE)and intraclass correlation coefficient(ICC)between MagDensity were evaluated using the manual segmentation as a reference.The test-retest reproducibility of MagDensity derived from different breast segmentation methods was assessed using the difference between the test and retest measures(Δ_(2-1)),MSE,and ICC.The results showed that MagDensity derived by the registration and deep learning segmentation methods exhibited high concordance with manual segmentation,with ICCs of 0.986(95%CI:0.974-0.993)and 0.983(95%CI:0.961-0.992),respectively.For test-retest analysis,MagDensity derived using the regis-tration algorithm achieved the smallest MSE of 0.370 and highest ICC of 0.993(95%CI:0.982-0.997)when compared to other segmentation methods.In conclusion,the proposed registration and deep learning whole-breast segmentation methods are accurate and reliable for estimating BD.Both methods outperformed a previously developed algorithm and manual segmentation in the test-retest assessment,with the registration exhibiting superior performance for highly reproducible BD measurements.
文摘Granulomatous mastitis, also called granulomatous lobular mastitis, is a benign pathology of the mammary gland characterized by chronic inflammation of the gland tissue, which becomes erythematous, manifesting itself as a palpable and painful mass on physical examination, sometimes it can be accompanied by abscesses. The following case is a 45-year-old Guatemalan female, with a history of increased volume in the left breast, compromising the upper quadrants. A mammogram was performed, followed by breast ultrasound;the diagnosis was confirmed by histology. The treatment offered was surgery with image controls every six months.