A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
Compressed sensing(CS) is a new theory of signal processing for simultaneous signal sampling and compression.The optimization methods with components regularization have been proposed to perform CS reconstruction of...Compressed sensing(CS) is a new theory of signal processing for simultaneous signal sampling and compression.The optimization methods with components regularization have been proposed to perform CS reconstruction of the natural images which always contain various morphological components.In this paper,in order to solve the components regularized optimization problem more accurately,an iterative algorithm is proposed based on the Bregman iteration.The proposed algorithm is an inner-outer iterative procedure,with the two-variable Bregman iteration as its outer iteration and the alternating minimization as its inner iteration.Experimental results show the superiority of the proposed algorithm to other recently developed algorithms in terms of the visual quality improvement and the detail feature preserving capability.展开更多
提出了一种高阶混合正则化图像盲复原方法,用于实现模糊噪声图像的清晰化盲复原。根据自然图像边缘的稀疏特性,对图像的边缘细节成分进行了全变差(total variation TV)正则化约束,根据自然图像同性质平滑区域内像素值的变化规律,将一种...提出了一种高阶混合正则化图像盲复原方法,用于实现模糊噪声图像的清晰化盲复原。根据自然图像边缘的稀疏特性,对图像的边缘细节成分进行了全变差(total variation TV)正则化约束,根据自然图像同性质平滑区域内像素值的变化规律,将一种高阶的类Tikhonov正则化约束运用于图像的平滑区域中,提出了一种新的高阶混合正则化模型。最后,提出一种多变量分裂布雷格曼(Multi-variable Split Bregman MSB)最优化迭代策略对提出的模型进行最优化求解。实验结果表明,提出的方法能够很好地保护图像的边缘细节,同时有效地消除图像平滑区域内的阶梯和假边缘瑕疵。与近几年的一些较好的图像盲复原方法相比,本文方法的信噪比增量(increase of the signal to noise ratio ISNR)增加了0.03~2.5dB。展开更多
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
基金supported by the National Nature Science Foundation of China (60802039, 61071146)the Specialized Research Fund for the Doctoral Program of Higher Education of China (200802880018)+2 种基金NUST Research Funding (2010ZDJH07)the Natural Science Foundation of Jiangsu (SBK201022367)Qing Lan Project of Jiangsu Province
文摘Compressed sensing(CS) is a new theory of signal processing for simultaneous signal sampling and compression.The optimization methods with components regularization have been proposed to perform CS reconstruction of the natural images which always contain various morphological components.In this paper,in order to solve the components regularized optimization problem more accurately,an iterative algorithm is proposed based on the Bregman iteration.The proposed algorithm is an inner-outer iterative procedure,with the two-variable Bregman iteration as its outer iteration and the alternating minimization as its inner iteration.Experimental results show the superiority of the proposed algorithm to other recently developed algorithms in terms of the visual quality improvement and the detail feature preserving capability.
文摘提出了一种高阶混合正则化图像盲复原方法,用于实现模糊噪声图像的清晰化盲复原。根据自然图像边缘的稀疏特性,对图像的边缘细节成分进行了全变差(total variation TV)正则化约束,根据自然图像同性质平滑区域内像素值的变化规律,将一种高阶的类Tikhonov正则化约束运用于图像的平滑区域中,提出了一种新的高阶混合正则化模型。最后,提出一种多变量分裂布雷格曼(Multi-variable Split Bregman MSB)最优化迭代策略对提出的模型进行最优化求解。实验结果表明,提出的方法能够很好地保护图像的边缘细节,同时有效地消除图像平滑区域内的阶梯和假边缘瑕疵。与近几年的一些较好的图像盲复原方法相比,本文方法的信噪比增量(increase of the signal to noise ratio ISNR)增加了0.03~2.5dB。