To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of...To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.展开更多
For the maintenance of steel bridges,the mechanical properties of steel used in the bridges must be elucidated.When enough dimensions of specimens cannot be extracted from the actual members,miniaturized specimens are...For the maintenance of steel bridges,the mechanical properties of steel used in the bridges must be elucidated.When enough dimensions of specimens cannot be extracted from the actual members,miniaturized specimens are used for evaluation.In the case of the Charpy impact test,sub-and half-size specimens are specified instead of full-size specimens of which the thickness is 10 mm.The value of absorbed energy and energy transient temperature obtained by Charpy impact tests with sub-size and half-size specimens were investigated from the viewpoint of maintenance of bridges in this study.The absorbed energy was not in proportion to the thickness of specimens of steel used in the actual overage bridges.The tendency of energy transient temperature obtained by thin specimens of the overage steel differed from that of the present steel.A method for evaluating the performance against brittle fracture occurrence based on the WES3003 criterion was examined.The results show the significance of evaluation based on the energy transient temperature for reasonable maintenance of bridges.展开更多
A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemica...A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemical compositions of this steel were suitable for welding.However,the aged steel contained much sulfur.Cruciform welded joints were fabricated with this aged steel.Welding defects or cracks were not observed in the joints.The Vickers hardness test on the welded part did not confirm extreme hardening or softening.After yielding by the static tensile test,the cruciform joints were fractured at the welded parts.One of the specimens was fractured in the middle of the thickness of the aged steel.The Sulfur contained in the aged steel might cause this type of fracture.The results show that there may be a risk of brittle fracture not only from the welded part but also from the base metal.The chemical compositions of aged steel must be analyzed when repair welding is applied to the steel.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld...In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.展开更多
Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension b...Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects.展开更多
The influence of carbon content on the mechanical properties of high yield strength bridge steel has been in- vestigated. The results show that the excellent mechanical properties and corrosion resistance are obtained...The influence of carbon content on the mechanical properties of high yield strength bridge steel has been in- vestigated. The results show that the excellent mechanical properties and corrosion resistance are obtained for the steel with carbon content of 0.03% -0. 05% (mass percent). According to the results, a new weathering bridge steel plate with carbon content of 0. 045% (mass percent) has been developed. The appropriate controlled cooling process should be taken due to the results of CCT (continuous cooling transformation) and TTT (time-temperature-transformation) to ensure both microstructure and mechanical properties. CCT curve of the newly developed steel shows that when accelerated cooling speed is higher than 5 ℃/s, the intermediate transformation products can be formed. The TTT curve displays that the intermediate transformation temperature ranges from 600 to 530 ℃. Yield strength of the newly developed steels reaches 500 MPa, and their elongation and toughness are excellent.展开更多
Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are system...Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are systematically conducted.The experimentally measured fatigue crack growth rates of surface cracks are compared with those of through-thickness cracks in detail.It is found that the crack growth rates of surface cracks are lower than those of through-thickness cracks.In order to correct their differences in fatigue crack growth rates, a dimensionless crack closure correction model is proposed.Although this correction model is determined only by the experimental data of surface cracks under tensile loading with a constant ratio R=0.05, it can correlate the surface crack growth rates with reasonable accuracy under tensile and bending loadings with various stress ratios ranging from 0 to 0.5.Furthermore, predictions of fatigue life and crack aspect ratio for surface cracks are discussed, and the predicted results are also compared with those obtained from other prediction approaches.Comparison results show that the proposed crack closure correction model gives better prediction of fatigue life than other models.展开更多
In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal)...In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.展开更多
Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was es...Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.展开更多
To investigate the fatigue damage of epoxy asphalt pavement(EAP)under a heavy load and a d temperature load,the load-figure of the heavy load on the steel bridge deck pavement(SBDP)was simulated first,and the temperat...To investigate the fatigue damage of epoxy asphalt pavement(EAP)under a heavy load and a d temperature load,the load-figure of the heavy load on the steel bridge deck pavement(SBDP)was simulated first,and the temperature distribution of SBDP during the temperature-fall period in winter was also calculated.Secondly,t e moving heavy load coupled W t the most unfavorable temperatre load was applied to the SBDP,and the tensile stress on the top of SBDP was calculated.Finally,the fatigue damage of EAP was evaluated considering the extreme situation of heavily overloaded and severe environments.The results show that botte heavy load and the temperature load during t e temperature-fall period c n increase the tensile stress on the top of SBDP significantly.In the exteme situation of heavily overloaded and severe environments,a fatigue crack is easily generated,and thus the SBDP should avoid t e coupling effects of the heavy loadand the temperature load in winter.展开更多
The corrosion of the anticorrosion coating and the defects of the asphalt concrete paved layer have been investigated on long-span steel box bridge decks. The anticorrosion coating lies in the midclle of two entirely ...The corrosion of the anticorrosion coating and the defects of the asphalt concrete paved layer have been investigated on long-span steel box bridge decks. The anticorrosion coating lies in the midclle of two entirely different materials: a highway steel box bridge deck and a paved layer, which is used as anticorrosion and waterproof coating for the steel bridge deck. For our study, electrochemical corrosion and pull strength experiments have been selected for the investigation of the corrosion properties of inorganic zinc rich coating, epoxy zinc rich coating and arc sprayed zinc coating. The adhesive strength between the coatings and the panel, and the effect of the coating corrosion on the shear properties of the paved layers including cast asphalt, thermal asphalt mortar, epoxy asphalt and modified asphalt con- crete have been investigated. The results show that the adhesive strength between the coatings and the bridge panel is controlled by the method of pre-processing rust removal. Coating by sandblasting has stronger adhesive strength than coating by shot peening. The results also reveal that shear strength of the paved layer is affected by the corrosion product of zinc coating. The arc sprayed zinc coating has stronger shear strength than zinc rich coatings.展开更多
To evaluate the effect of treating long cracks with the impact crack-closure retrofit(ICR)technique,three rib-to-deck welded specimens with a crack length of about 100 mm were tested.The metallographic structure,crack...To evaluate the effect of treating long cracks with the impact crack-closure retrofit(ICR)technique,three rib-to-deck welded specimens with a crack length of about 100 mm were tested.The metallographic structure,crack section,crack propagation life,and stress variation were analyzed.Finite-element models were also developed,and some optimal values of certain parameters are suggested according to the simulated results.The results show that new crack sources are generated on both sides of the ICR-treated region because of the stress distribution.The fatigue lives of cracked specimens with long cracks are significantly improved by the technique.Considerable residual compressive stress is also induced,and so it is suggested that the optimal impact angle to be applied to real bridges should be 70°.The stress at the weld root is distributed uniformly with the crack closed,and the optimal crack-closure depth is 4 mm.To evaluate the effect of different crack-closure depths in tests,it is recommended that a hot-spot stress method which is extrapolated by three reference points should be adopted.展开更多
Due to the complex structure and dense weld of the orthotropic steel bridge deck(OSBD),fatigue cracks are prone to occur in the typical welding details.Welding residual stress(WRS)will cause a plastic zone at the crac...Due to the complex structure and dense weld of the orthotropic steel bridge deck(OSBD),fatigue cracks are prone to occur in the typical welding details.Welding residual stress(WRS)will cause a plastic zone at the crack tip.In this paper,an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced,and the extended finite element method(XFEM)was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation.By judging the stress state of the residual stress field at the crack tip and selecting different crack propagation rate models to investigate the crack propagation law when plastic deformation was considered,the propagation path and propagation rate of fatigue crack of the OSBD were obtained.The results show that,whether the residual stress field is considered or not,the plastic deformation at the crack tip will not cause the obvious closure of the fatigue crack at the U-rib toe during the crack propagation process,but will significantly affect the crack propagation path.When material plasticity is considered,the propagation angle of fatigue crack at the U-rib toe basically remains unchanged along the short-axis direction of the initial crack,but is going up along the long-axis direction,and the crack tip plastic zone inhibits the propagation of the crack tip on one side.Compared with linear elastic materials,the crack propagation law considering material plasticity is more consistent with that in actual bridge engineering.In terms of the propagation rate,if the residual stress field is not considered,the fatigue crack propagation rate at U-rib toe with plasticity considered is slightly higher than that without plasticity considered,because plastic deformation will affect the amplitude of energy release rate.When considering the WRS field,the fatigue crack propagation rate at U-rib toe is increased due to the combined actions of plastic deformation and stress ratio R.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
A review of the current status and progress of steel arch bridges in China is presented in this paper. The existing steel arch bridges in China were analyzed in terms of steel material, span, structure type, main arch...A review of the current status and progress of steel arch bridges in China is presented in this paper. The existing steel arch bridges in China were analyzed in terms of steel material, span, structure type, main arch rib form and construction method. The comparison with CFST arch bridges and RC arch bridges is also conducted. It is shown that steel arch bridge has gain rapid development in China since 2000, characterized by long main spans. As for the span, most of the steel arch bridges have a span less than 250 m, while when the span exceeds 350 m, steel arch bridges are strongly competitive against CFST or RC arch bridges. Over 80% of the bridges are through and half-through bridge types, and the arch ribs are hingeless structures. The rise-to-span ratios of the arches are mainly between 1:4 and 1: 5. Most of the arches use solid box ribs, and a small portion of arches use truss ribs in which box sections are mostly adopted for the truss members. The cantilever method and scaffolding method are the two main construction methods used, but some other construction methods have also been developed.展开更多
Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Consider...Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.展开更多
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure...Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.展开更多
This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at brid...This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at bridges under three different vehicular speeds of 10 km/hr,20 km/hr,and 30 km/hr are analyzed using statistical features such as kurtosis,magnitude of peak-to-peak,root mean square,crest factor as well as impulse factor in time domain,and Stockwell transform in the time-frequency domain.The considered statistical features except for kurtosis show uncertain behavior.The Stockwell transform showed low-resolution outcomes when the presence of noise in the recorded vibration responses.The elimination of noise and extraction of meaningful dynamic properties from the vibration responses is done by applying a new method which comes from the fusion of Hilbert transform with Spectral kurtosis and bandpass filtering.The outcomes obtained from Hilbert transform processed residual signals which are further filtered using bandpass filter show more robustness and accuracy in characterizing bridge modal frequencies from the noisy vibration responses.The proposed method produces a high-resolution frequency response which can unveil the joint discrepancy in the bridge structure.展开更多
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate...A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.展开更多
基金The National Natural Science Foundation of China(No.51878167)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX23_0300).
文摘To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.
文摘For the maintenance of steel bridges,the mechanical properties of steel used in the bridges must be elucidated.When enough dimensions of specimens cannot be extracted from the actual members,miniaturized specimens are used for evaluation.In the case of the Charpy impact test,sub-and half-size specimens are specified instead of full-size specimens of which the thickness is 10 mm.The value of absorbed energy and energy transient temperature obtained by Charpy impact tests with sub-size and half-size specimens were investigated from the viewpoint of maintenance of bridges in this study.The absorbed energy was not in proportion to the thickness of specimens of steel used in the actual overage bridges.The tendency of energy transient temperature obtained by thin specimens of the overage steel differed from that of the present steel.A method for evaluating the performance against brittle fracture occurrence based on the WES3003 criterion was examined.The results show the significance of evaluation based on the energy transient temperature for reasonable maintenance of bridges.
文摘A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemical compositions of this steel were suitable for welding.However,the aged steel contained much sulfur.Cruciform welded joints were fabricated with this aged steel.Welding defects or cracks were not observed in the joints.The Vickers hardness test on the welded part did not confirm extreme hardening or softening.After yielding by the static tensile test,the cruciform joints were fractured at the welded parts.One of the specimens was fractured in the middle of the thickness of the aged steel.The Sulfur contained in the aged steel might cause this type of fracture.The results show that there may be a risk of brittle fracture not only from the welded part but also from the base metal.The chemical compositions of aged steel must be analyzed when repair welding is applied to the steel.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52268048)the Guangxi Key Technology Research and Development Program(Grant No.GUI-KEAB23026101)the Guangxi Science and Technology Major Special Project(Grant No.GUI-KEAA22068066).
文摘In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.
文摘Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects.
基金Item Sponsored by National Natural Science Foundation of China(50571016,50571089)National Key Basic Research and Development Program of China(2004CB619102)National High Technology Research and Development Program of China(2006AA03Z507)
文摘The influence of carbon content on the mechanical properties of high yield strength bridge steel has been in- vestigated. The results show that the excellent mechanical properties and corrosion resistance are obtained for the steel with carbon content of 0.03% -0. 05% (mass percent). According to the results, a new weathering bridge steel plate with carbon content of 0. 045% (mass percent) has been developed. The appropriate controlled cooling process should be taken due to the results of CCT (continuous cooling transformation) and TTT (time-temperature-transformation) to ensure both microstructure and mechanical properties. CCT curve of the newly developed steel shows that when accelerated cooling speed is higher than 5 ℃/s, the intermediate transformation products can be formed. The TTT curve displays that the intermediate transformation temperature ranges from 600 to 530 ℃. Yield strength of the newly developed steels reaches 500 MPa, and their elongation and toughness are excellent.
文摘Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are systematically conducted.The experimentally measured fatigue crack growth rates of surface cracks are compared with those of through-thickness cracks in detail.It is found that the crack growth rates of surface cracks are lower than those of through-thickness cracks.In order to correct their differences in fatigue crack growth rates, a dimensionless crack closure correction model is proposed.Although this correction model is determined only by the experimental data of surface cracks under tensile loading with a constant ratio R=0.05, it can correlate the surface crack growth rates with reasonable accuracy under tensile and bending loadings with various stress ratios ranging from 0 to 0.5.Furthermore, predictions of fatigue life and crack aspect ratio for surface cracks are discussed, and the predicted results are also compared with those obtained from other prediction approaches.Comparison results show that the proposed crack closure correction model gives better prediction of fatigue life than other models.
基金The National Natural Science Foundation of China(No.51378122)
文摘In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Railway of ChinaProject(2006FJ4233) supported by Hunan Postdoctoral Scientific Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University,China
文摘Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.
基金The National Natural Science Foundation of China(Nos.51378122,51678146)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1680)
文摘To investigate the fatigue damage of epoxy asphalt pavement(EAP)under a heavy load and a d temperature load,the load-figure of the heavy load on the steel bridge deck pavement(SBDP)was simulated first,and the temperature distribution of SBDP during the temperature-fall period in winter was also calculated.Secondly,t e moving heavy load coupled W t the most unfavorable temperatre load was applied to the SBDP,and the tensile stress on the top of SBDP was calculated.Finally,the fatigue damage of EAP was evaluated considering the extreme situation of heavily overloaded and severe environments.The results show that botte heavy load and the temperature load during t e temperature-fall period c n increase the tensile stress on the top of SBDP significantly.In the exteme situation of heavily overloaded and severe environments,a fatigue crack is easily generated,and thus the SBDP should avoid t e coupling effects of the heavy loadand the temperature load in winter.
基金Project BK2005020 supported by the Natural Science Foundation of the Jiangsu Province
文摘The corrosion of the anticorrosion coating and the defects of the asphalt concrete paved layer have been investigated on long-span steel box bridge decks. The anticorrosion coating lies in the midclle of two entirely different materials: a highway steel box bridge deck and a paved layer, which is used as anticorrosion and waterproof coating for the steel bridge deck. For our study, electrochemical corrosion and pull strength experiments have been selected for the investigation of the corrosion properties of inorganic zinc rich coating, epoxy zinc rich coating and arc sprayed zinc coating. The adhesive strength between the coatings and the panel, and the effect of the coating corrosion on the shear properties of the paved layers including cast asphalt, thermal asphalt mortar, epoxy asphalt and modified asphalt con- crete have been investigated. The results show that the adhesive strength between the coatings and the bridge panel is controlled by the method of pre-processing rust removal. Coating by sandblasting has stronger adhesive strength than coating by shot peening. The results also reveal that shear strength of the paved layer is affected by the corrosion product of zinc coating. The arc sprayed zinc coating has stronger shear strength than zinc rich coatings.
基金Projects(51478163,51678216)supported by the National Natural Science Foundation of ChinaProject(2017Y09)supported by the Transport Science Research Project of Jiangsu Province,China
文摘To evaluate the effect of treating long cracks with the impact crack-closure retrofit(ICR)technique,three rib-to-deck welded specimens with a crack length of about 100 mm were tested.The metallographic structure,crack section,crack propagation life,and stress variation were analyzed.Finite-element models were also developed,and some optimal values of certain parameters are suggested according to the simulated results.The results show that new crack sources are generated on both sides of the ICR-treated region because of the stress distribution.The fatigue lives of cracked specimens with long cracks are significantly improved by the technique.Considerable residual compressive stress is also induced,and so it is suggested that the optimal impact angle to be applied to real bridges should be 70°.The stress at the weld root is distributed uniformly with the crack closed,and the optimal crack-closure depth is 4 mm.To evaluate the effect of different crack-closure depths in tests,it is recommended that a hot-spot stress method which is extrapolated by three reference points should be adopted.
基金The works described in this paper are substantially supported by the grant from the National Natural Science Foundation of China(Grant No.51678135)the Natural Science Foundation of Jiangsu Province(No.BK20171350)Six Talent Peak Projects in Jiangsu Province(JNHB-007),which are gratefully acknowledged.
文摘Due to the complex structure and dense weld of the orthotropic steel bridge deck(OSBD),fatigue cracks are prone to occur in the typical welding details.Welding residual stress(WRS)will cause a plastic zone at the crack tip.In this paper,an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced,and the extended finite element method(XFEM)was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation.By judging the stress state of the residual stress field at the crack tip and selecting different crack propagation rate models to investigate the crack propagation law when plastic deformation was considered,the propagation path and propagation rate of fatigue crack of the OSBD were obtained.The results show that,whether the residual stress field is considered or not,the plastic deformation at the crack tip will not cause the obvious closure of the fatigue crack at the U-rib toe during the crack propagation process,but will significantly affect the crack propagation path.When material plasticity is considered,the propagation angle of fatigue crack at the U-rib toe basically remains unchanged along the short-axis direction of the initial crack,but is going up along the long-axis direction,and the crack tip plastic zone inhibits the propagation of the crack tip on one side.Compared with linear elastic materials,the crack propagation law considering material plasticity is more consistent with that in actual bridge engineering.In terms of the propagation rate,if the residual stress field is not considered,the fatigue crack propagation rate at U-rib toe with plasticity considered is slightly higher than that without plasticity considered,because plastic deformation will affect the amplitude of energy release rate.When considering the WRS field,the fatigue crack propagation rate at U-rib toe is increased due to the combined actions of plastic deformation and stress ratio R.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
文摘A review of the current status and progress of steel arch bridges in China is presented in this paper. The existing steel arch bridges in China were analyzed in terms of steel material, span, structure type, main arch rib form and construction method. The comparison with CFST arch bridges and RC arch bridges is also conducted. It is shown that steel arch bridge has gain rapid development in China since 2000, characterized by long main spans. As for the span, most of the steel arch bridges have a span less than 250 m, while when the span exceeds 350 m, steel arch bridges are strongly competitive against CFST or RC arch bridges. Over 80% of the bridges are through and half-through bridge types, and the arch ribs are hingeless structures. The rise-to-span ratios of the arches are mainly between 1:4 and 1: 5. Most of the arches use solid box ribs, and a small portion of arches use truss ribs in which box sections are mostly adopted for the truss members. The cantilever method and scaffolding method are the two main construction methods used, but some other construction methods have also been developed.
文摘Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.
基金Project(2004G016-B) supported by the Science and Technology Development Program of Railways Department,China
文摘Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.
文摘This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at bridges under three different vehicular speeds of 10 km/hr,20 km/hr,and 30 km/hr are analyzed using statistical features such as kurtosis,magnitude of peak-to-peak,root mean square,crest factor as well as impulse factor in time domain,and Stockwell transform in the time-frequency domain.The considered statistical features except for kurtosis show uncertain behavior.The Stockwell transform showed low-resolution outcomes when the presence of noise in the recorded vibration responses.The elimination of noise and extraction of meaningful dynamic properties from the vibration responses is done by applying a new method which comes from the fusion of Hilbert transform with Spectral kurtosis and bandpass filtering.The outcomes obtained from Hilbert transform processed residual signals which are further filtered using bandpass filter show more robustness and accuracy in characterizing bridge modal frequencies from the noisy vibration responses.The proposed method produces a high-resolution frequency response which can unveil the joint discrepancy in the bridge structure.
文摘A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.