We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energ...The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energies, vibration frequencies, and charge distributions were reported. The Pt-Pt bridge site modified by Pd atoms was found to be the most active site for the dissociation of dioxygen, which was mainly due to the change of electronic structures of the Pt atoms in bimetallic Pt-Pd clusters.展开更多
The electrocatalysis of oxygen evolution reaction(OER)plays a key role in clean energy storage and transfer.Nonetheless,the sluggish kinetics and poor durability under acidic and neutral conditions severely hinder pra...The electrocatalysis of oxygen evolution reaction(OER)plays a key role in clean energy storage and transfer.Nonetheless,the sluggish kinetics and poor durability under acidic and neutral conditions severely hinder practical applications such as electrolyzer compatible with the powerful proton exchange membrane and biohybrid fuel production.Here,we report a borondoped ruthenium dioxide electrocatalyst(B-RuO_(2))fabricated by a facile boric acid assisted strategy which demonstrates excellent acidic and neutral OER performances.Density functional theory calculations and advanced characterizations reveal that the boron species form an anomalous B–O covalent bonding with the oxygen atoms of RuO_(2)and expose the fully coordinately bridge ruthenium site(Ru-bri site),which seems like a switch that turns on the inactive Ru-bri site into OER-active,resulting in more exposed active sites,modified electronic structure,and optimized binding energy of intermediates.Thus,the B-RuO_(2)exhibits an ultralow overpotential of 200 mV at 10 mA/cm^(2)and maintains excellent stability compared to commercial RuO_(2)in 0.5 M sulfuric acid.Moreover,the superior performance is as well displayed in neutral electrolyte,surpassing most previously reported catalysts.展开更多
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金This work was partly supported by Innovation Foundation of the Chinese Academy of Sciences (K2003D2), National Natural Science Foundation of China (No. 20173060), Hi-tech Research and Development Program of China (2003AA517040) and Knowledge Innovation Program of the Chinese Academy of Sciences (KGCX2-SW-310)
文摘The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energies, vibration frequencies, and charge distributions were reported. The Pt-Pt bridge site modified by Pd atoms was found to be the most active site for the dissociation of dioxygen, which was mainly due to the change of electronic structures of the Pt atoms in bimetallic Pt-Pd clusters.
基金the National Key Research and Development Program of China(No.2020YFA0405800)the National Natrual Science Foundation of China(Nos.U1932201,U2032113,and 22075264)+2 种基金CAS Collaborative Innovation Program of Hefei Science Center(No.2020HSC-CIP002)CAS Interdisciplinary Innovation Team,and USTC Research Funds of the Double First-Class Initiative(No.YD2310002003)L.S.also thanks the financial support from State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,College of Chemistry,Jilin University.
文摘The electrocatalysis of oxygen evolution reaction(OER)plays a key role in clean energy storage and transfer.Nonetheless,the sluggish kinetics and poor durability under acidic and neutral conditions severely hinder practical applications such as electrolyzer compatible with the powerful proton exchange membrane and biohybrid fuel production.Here,we report a borondoped ruthenium dioxide electrocatalyst(B-RuO_(2))fabricated by a facile boric acid assisted strategy which demonstrates excellent acidic and neutral OER performances.Density functional theory calculations and advanced characterizations reveal that the boron species form an anomalous B–O covalent bonding with the oxygen atoms of RuO_(2)and expose the fully coordinately bridge ruthenium site(Ru-bri site),which seems like a switch that turns on the inactive Ru-bri site into OER-active,resulting in more exposed active sites,modified electronic structure,and optimized binding energy of intermediates.Thus,the B-RuO_(2)exhibits an ultralow overpotential of 200 mV at 10 mA/cm^(2)and maintains excellent stability compared to commercial RuO_(2)in 0.5 M sulfuric acid.Moreover,the superior performance is as well displayed in neutral electrolyte,surpassing most previously reported catalysts.