期刊文献+
共找到605篇文章
< 1 2 31 >
每页显示 20 50 100
Differential diagnosis of Crohn’s disease and intestinal tuberculosis based on ATR-FTIR spectroscopy combined with machine learning 被引量:1
1
作者 Yuan-Peng Li Tian-Yu Lu +5 位作者 Fu-Rong Huang Wei-Min Zhang Zhen-Qiang Chen Pei-Wen Guang Liang-Yu Deng Xin-Hao Yang 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1377-1392,共16页
BACKGROUND Crohn’s disease(CD)is often misdiagnosed as intestinal tuberculosis(ITB).However,the treatment and prognosis of these two diseases are dramatically different.Therefore,it is important to develop a method t... BACKGROUND Crohn’s disease(CD)is often misdiagnosed as intestinal tuberculosis(ITB).However,the treatment and prognosis of these two diseases are dramatically different.Therefore,it is important to develop a method to identify CD and ITB with high accuracy,specificity,and speed.AIM To develop a method to identify CD and ITB with high accuracy,specificity,and speed.METHODS A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB.Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis.RESULTS The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm^(-1) and 1234 cm^(-1) bands,and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy,specificity,and sensitivity of 91.84%,92.59%,and 90.90%,respectively,for the differential diagnosis of CD and ITB.CONCLUSION Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level,and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB. 展开更多
关键词 Infrared spectroscopy machine learning Intestinal tuberculosis Crohn’s disease Differential diagnosis Inflammatory bowel disease
下载PDF
Can serious postoperative complications in patients with Crohn’s disease be predicted using machine learning?
2
作者 Andrew Paul Zbar 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第10期3358-3362,共5页
The routine introduction of novel anti-inflammatory therapies into the mana-gement algorithms of patients with Crohn’s disease over the last 2 decades has not substantially changed the likelihood of ultimate surgery.... The routine introduction of novel anti-inflammatory therapies into the mana-gement algorithms of patients with Crohn’s disease over the last 2 decades has not substantially changed the likelihood of ultimate surgery.Rather it has delayed the operative need and altered the presentation phenotype.The prospect of complic-ations continues to remain high in this modern era but depending upon the cohort assessed,it remains difficult to make strict comparisons between individual spe-cialist centres.Those patients who present rather late after their diagnosis with a septic complication like an intra-abdominal abscess and a penetrating/fistulizing pattern of disease are more likely to have a complicated course particularly if they have clinical features such as difficult percutaneous access to the collection or multilocularity both of which can make preoperative drainage unsuccessful.Eq-ually,those cases with extensive adhesions where an initial laparoscopic approach needs open conversion and where there is an extended operative time,unsur-prisingly will suffer more significant complications that impact their length of hospital stay.The need for a protective stoma also introduces its own derivative costs,utilizing a range of health resources as well as resulting in important alte-rations in quality of life outcomes.Having established the parameters of the pro-blem can the statistical analysis of the available data identify high-risk cases,promote the notion of centralization of specialist services or improve the allo-cation of disease-specific health expenditure? 展开更多
关键词 Crohn’s disease Postoperative complications Clavien-Dindo machine learning OUTCOME
下载PDF
Machine learning in predicting postoperative complications in Crohn’s disease
3
作者 Li-Fan Zhang Liu-Xiang Chen +1 位作者 Wen-Juan Yang Bing Hu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2745-2747,共3页
Crohn's disease(CD)is a chronic inflammatory bowel disease of unknown origin that can cause significant disability and morbidity with its progression.Due to the unique nature of CD,surgery is often necessary for m... Crohn's disease(CD)is a chronic inflammatory bowel disease of unknown origin that can cause significant disability and morbidity with its progression.Due to the unique nature of CD,surgery is often necessary for many patients during their lifetime,and the incidence of postoperative complications is high,which can affect the prognosis of patients.Therefore,it is essential to identify and manage post-operative complications.Machine learning(ML)has become increasingly im-portant in the medical field,and ML-based models can be used to predict post-operative complications of intestinal resection for CD.Recently,a valuable article titled“Predicting short-term major postoperative complications in intestinal resection for Crohn's disease:A machine learning-based study”was published by Wang et al.We appreciate the authors'creative work,and we are willing to share our views and discuss them with the authors. 展开更多
关键词 Crohn’s disease Intestinal resection Postoperative complications machine learning Explainability
下载PDF
Machine learning as a tool predicting short-term postoperative complications in Crohn’s disease patients undergoing intestinal resection: What frontiers?
4
作者 Raffaele Pellegrino Antonietta Gerarda Gravina 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第9期2755-2759,共5页
The recent study,“Predicting short-term major postoperative complications in intestinal resection for Crohn’s disease:A machine learning-based study”invest-igated the predictive efficacy of a machine learning model... The recent study,“Predicting short-term major postoperative complications in intestinal resection for Crohn’s disease:A machine learning-based study”invest-igated the predictive efficacy of a machine learning model for major postoperative complications within 30 days of surgery in Crohn’s disease(CD)patients.Em-ploying a random forest analysis and Shapley Additive Explanations,the study prioritizes factors such as preoperative nutritional status,operative time,and CD activity index.Despite the retrospective design’s limitations,the model’s robu-stness,with area under the curve values surpassing 0.8,highlights its clinical potential.The findings align with literature supporting preoperative nutritional therapy in inflammatory bowel diseases,emphasizing the importance of compre-hensive assessment and optimization.While a significant advancement,further research is crucial for refining preoperative strategies in CD patients. 展开更多
关键词 machine learning Crohn’s disease Intestinal resection Postoperative complications Preoperative assessment Nutritional optimization Predictive model Gastrointestinal surgery sURGERY
下载PDF
Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis 被引量:3
5
作者 Ying-Zhi Zhang Jin-Tong Liu +2 位作者 Gui-Xiang Shen Zhe Long Shu-Guang Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期933-942,共10页
In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machin... In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system. 展开更多
关键词 s Cascading failure machine centercomponents Reliability evaluation Pagerank algorithmInfluenced degree
下载PDF
Decoding degeneration:the implementation of machine learning for clinical detection of neurodegenerative disorders 被引量:2
6
作者 Fariha Khaliq Jane Oberhauser +1 位作者 Debia Wakhloo Sameehan Mahajani 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1235-1242,共8页
Machine learning represents a growing subfield of artificial intelligence with much promise in the diagnosis,treatment,and tracking of complex conditions,including neurodegenerative disorders such as Alzheimer’s and ... Machine learning represents a growing subfield of artificial intelligence with much promise in the diagnosis,treatment,and tracking of complex conditions,including neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases.While no definitive methods of diagnosis or treatment exist for either disease,researchers have implemented machine learning algorithms with neuroimaging and motion-tracking technology to analyze pathologically relevant symptoms and biomarkers.Deep learning algorithms such as neural networks and complex combined architectures have proven capable of tracking disease-linked changes in brain structure and physiology as well as patient motor and cognitive symptoms and responses to treatment.However,such techniques require further development aimed at improving transparency,adaptability,and reproducibility.In this review,we provide an overview of existing neuroimaging technologies and supervised and unsupervised machine learning techniques with their current applications in the context of Alzheimer’s and Parkinson’s diseases. 展开更多
关键词 Alzheimer’s disease clinical detection deep learning machine learning neurodegenerative disorders NEUROIMAGING Parkinson’s disease
下载PDF
Implementation of a Smartphone as a Wearable and Wireless Accelerometer and Gyroscope Platform for Ascertaining Deep Brain Stimulation Treatment Efficacy of Parkinson’s Disease through Machine Learning Classification 被引量:4
7
作者 Robert LeMoyne Timothy Mastroianni +3 位作者 Cyrus McCandless Christopher Currivan Donald Whiting Nestor Tomycz 《Advances in Parkinson's Disease》 2018年第2期19-30,共12页
Parkinson’s disease manifests in movement disorder symptoms, such as hand tremor. There exists an assortment of therapy interventions. In particular deep brain stimulation offers considerable efficacy for the treatme... Parkinson’s disease manifests in movement disorder symptoms, such as hand tremor. There exists an assortment of therapy interventions. In particular deep brain stimulation offers considerable efficacy for the treatment of Parkinson’s disease. However, a considerable challenge is the convergence toward an optimal configuration of tuning parameters. Quantified feedback from a wearable and wireless system consisting of an accelerometer and gyroscope can be enabled through a novel software application on a smartphone. The smartphone with its internal accelerometer and gyroscope can record the quantified attributes of Parkinson’s disease and tremor through mounting the smartphone about the dorsum of the hand. The recorded data can be then wirelessly transmitted as an email attachment to an Internet derived resource for subsequent post-processing. The inertial sensor data can be consolidated into a feature set for machine learning classification. A multilayer perceptron neural network has been successfully applied to attain considerable classification accuracy between deep brain stimulation “On” and “Off” scenarios for a subject with Parkinson’s disease. The findings establish the foundation for the broad objective of applying wearable and wireless systems for the development of closed-loop optimization of deep brain stimulation parameters in the context of cloud computing with machine learning classification. 展开更多
关键词 Parkinson’s Disease Deep Brain stimulation WEARABLE and WIRELEss systems sMARTPHONE machine Learning WIRELEss ACCELEROMETER WIRELEss GYROsCOPE Hand Tremor
下载PDF
Comparison and development of machine learning for thalidomideinduced peripheral neuropathy prediction of refractory Crohn’s disease in Chinese population 被引量:1
8
作者 Jing Mao Kang Chao +9 位作者 Fu-Lin Jiang Xiao-Ping Ye Ting Yang Pan Li Xia Zhu Pin-Jin Hu Bai-Jun Zhou Min Huang Xiang Gao Xue-Ding Wang 《World Journal of Gastroenterology》 SCIE CAS 2023年第24期3855-3870,共16页
BACKGROUND Thalidomide is an effective treatment for refractory Crohn’s disease(CD).However,thalidomide-induced peripheral neuropathy(TiPN),which has a large individual variation,is a major cause of treatment failure... BACKGROUND Thalidomide is an effective treatment for refractory Crohn’s disease(CD).However,thalidomide-induced peripheral neuropathy(TiPN),which has a large individual variation,is a major cause of treatment failure.TiPN is rarely predictable and recognized,especially in CD.It is necessary to develop a risk model to predict TiPN occurrence.AIM To develop and compare a predictive model of TiPN using machine learning based on comprehensive clinical and genetic variables.METHODS A retrospective cohort of 164 CD patients from January 2016 to June 2022 was used to establish the model.The National Cancer Institute Common Toxicity Criteria Sensory Scale(version 4.0)was used to assess TiPN.With 18 clinical features and 150 genetic variables,five predictive models were established and evaluated by the confusion matrix receiver operating characteristic curve(AUROC),area under the precision-recall curve(AUPRC),specificity,sensitivity(recall rate),precision,accuracy,and F1 score.RESULTS The top-ranking five risk variables associated with TiPN were interleukin-12 rs1353248[P=0.0004,odds ratio(OR):8.983,95%confidence interval(CI):2.497-30.90],dose(mg/d,P=0.002),brainderived neurotrophic factor(BDNF)rs2030324(P=0.001,OR:3.164,95%CI:1.561-6.434),BDNF rs6265(P=0.001,OR:3.150,95%CI:1.546-6.073)and BDNF rs11030104(P=0.001,OR:3.091,95%CI:1.525-5.960).In the training set,gradient boosting decision tree(GBDT),extremely random trees(ET),random forest,logistic regression and extreme gradient boosting(XGBoost)obtained AUROC values>0.90 and AUPRC>0.87.Among these models,XGBoost and GBDT obtained the first two highest AUROC(0.90 and 1),AUPRC(0.98 and 1),accuracy(0.96 and 0.98),precision(0.90 and 0.95),F1 score(0.95 and 0.98),specificity(0.94 and 0.97),and sensitivity(1).In the validation set,XGBoost algorithm exhibited the best predictive performance with the highest specificity(0.857),accuracy(0.818),AUPRC(0.86)and AUROC(0.89).ET and GBDT obtained the highest sensitivity(1)and F1 score(0.8).Overall,compared with other state-of-the-art classifiers such as ET,GBDT and RF,XGBoost algorithm not only showed a more stable performance,but also yielded higher ROC-AUC and PRC-AUC scores,demonstrating its high accuracy in prediction of TiPN occurrence.CONCLUSION The powerful XGBoost algorithm accurately predicts TiPN using 18 clinical features and 14 genetic variables.With the ability to identify high-risk patients using single nucleotide polymorphisms,it offers a feasible option for improving thalidomide efficacy in CD patients. 展开更多
关键词 Thalidomide-induced peripheral neuropathy Refractory Crohn’s disease Neurotoxicity prediction models machine learning Gene polymorphisms
下载PDF
Enhancing Parkinson’s Disease Prediction Using Machine Learning and Feature Selection Methods 被引量:1
9
作者 Faisal Saeed Mohammad Al-Sarem +4 位作者 Muhannad Al-Mohaimeed Abdelhamid Emara Wadii Boulila Mohammed Alasli Fahad Ghabban 《Computers, Materials & Continua》 SCIE EI 2022年第6期5639-5657,共19页
Several millions of people suffer from Parkinson’s disease globally.Parkinson’s affects about 1%of people over 60 and its symptoms increase with age.The voice may be affected and patients experience abnormalities in... Several millions of people suffer from Parkinson’s disease globally.Parkinson’s affects about 1%of people over 60 and its symptoms increase with age.The voice may be affected and patients experience abnormalities in speech that might not be noticed by listeners,but which could be analyzed using recorded speech signals.With the huge advancements of technology,the medical data has increased dramatically,and therefore,there is a need to apply data mining and machine learning methods to extract new knowledge from this data.Several classification methods were used to analyze medical data sets and diagnostic problems,such as Parkinson’s Disease(PD).In addition,to improve the performance of classification,feature selection methods have been extensively used in many fields.This paper aims to propose a comprehensive approach to enhance the prediction of PD using several machine learning methods with different feature selection methods such as filter-based and wrapper-based.The dataset includes 240 recodes with 46 acoustic features extracted from3 voice recording replications for 80 patients.The experimental results showed improvements when wrapper-based features selection method was used with K-NN classifier with accuracy of 88.33%.The best obtained results were compared with other studies and it was found that this study provides comparable and superior results. 展开更多
关键词 Filter-based feature selection methods machine learning parkinson’s disease wrapper-based feature selection methods
下载PDF
Speech Analysis for Diagnosis of Parkinson’s Disease Using Genetic Algorithm and Support Vector Machine 被引量:1
10
作者 Mohammad Shahbakhi Danial Taheri Far Ehsan Tahami 《Journal of Biomedical Science and Engineering》 2014年第4期147-156,共10页
Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, in... Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, including EEG, gait and speech. Since approximately 90 percent of the people with PD suffer from speech disorders, speech analysis is considered as the most common technique for this aim. This paper proposes a new algorithm for diagnosing of Parkinson’s disease based on voice analysis. In the first step, genetic algorithm (GA) is undertaken for selecting optimized features from all extracted features. Afterwards a network based on support vector machine (SVM) is used for classification between healthy and people with Parkinson. The dataset of this research is composed of a range of biomedical voice signals from 31 people, 23 with Parkinson’s disease and 8 healthy people. The subjects were asked to pronounce letter “A” for 3 seconds. 22 linear and non-linear features were extracted from the signals that 14 features were based on F0 (fundamental frequency or pitch), jitter, shimmer and noise to harmonics ratio, which are main factors in voice signal. Because changing in these factors is noticeable for the people with PD, optimized features were selected among them. Of the various numbers of optimized features, the data classification was investigated. Results show that the classification accuracy percent of 94.50 per 4 optimized features, the accuracy percent of 93.66 per 7 optimized features and the accuracy percent of 94.22 per 9 optimized features, could be achieved. It can be observed that the best classification accuracy may be achieved using Fhi (Hz), Fho (Hz), jitter (RAP) and shimmer (APQ5). 展开更多
关键词 Parkinson’s Disease sPEECH Analysis GENETIC Algorithm support VECTOR machine
下载PDF
Modeling and Analysis of Single Machine Scheduling Based on Noncooperative Game Theory 被引量:3
11
作者 WANGChang-Jun XIYu-Geng 《自动化学报》 EI CSCD 北大核心 2005年第4期516-522,共7页
Considering the independent optimization requirement for each demander of modernmanufacture, we explore the application of noncooperative game in production scheduling research,and model scheduling problem as competit... Considering the independent optimization requirement for each demander of modernmanufacture, we explore the application of noncooperative game in production scheduling research,and model scheduling problem as competition of machine resources among a group of selfish jobs.Each job has its own performance objective. For the single machine, multi-jobs and non-preemptivescheduling problem, a noncooperative game model is established. Based on the model, many prob-lems about Nash equilibrium solution, such as the existence, quantity, properties of solution space,performance of solution and algorithm are discussed. The results are tested by numerical example. 展开更多
关键词 单机时序 NAsH平衡 工作计划 工作目标 自动化技术
下载PDF
Preliminary Network Centric Therapy for Machine Learning Classification of Deep Brain Stimulation Status for the Treatment of Parkinson’s Disease with a Conformal Wearable and Wireless Inertial Sensor 被引量:11
12
作者 Robert LeMoyne Timothy Mastroianni +1 位作者 Donald Whiting Nestor Tomycz 《Advances in Parkinson's Disease》 2019年第4期75-91,共17页
The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Thera... The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Therapy is highly relevant to the treatment of Parkinson’s disease through deep brain stimulation. Originally wearable and wireless systems for quantifying Parkinson’s disease involved the use a smartphone to quantify hand tremor. Although originally novel, the smartphone has notable issues as a wearable application for quantifying movement disorder tremor. The smartphone has evolved in a pathway that has made the smartphone progressively more cumbersome to mount about the dorsum of the hand. Furthermore, the smartphone utilizes an inertial sensor package that is not certified for medical analysis, and the trial data access a provisional Cloud computing environment through an email account. These concerns are resolved with the recent development of a conformal wearable and wireless inertial sensor system. This conformal wearable and wireless system mounts to the hand with the profile of a bandage by adhesive and accesses a secure Cloud computing environment through a segmented wireless connectivity strategy involving a smartphone and tablet. Additionally, the conformal wearable and wireless system is certified by the FDA of the United States of America for ascertaining medical grade inertial sensor data. These characteristics make the conformal wearable and wireless system uniquely suited for the quantification of Parkinson’s disease treatment through deep brain stimulation. Preliminary evaluation of the conformal wearable and wireless system is demonstrated through the differentiation of deep brain stimulation set to “On” and “Off” status. Based on the robustness of the acceleration signal, this signal was selected to quantify hand tremor for the prescribed deep brain stimulation settings. Machine learning classification using the Waikato Environment for Knowledge Analysis (WEKA) was applied using the multilayer perceptron neural network. The multilayer perceptron neural network achieved considerable classification accuracy for distinguishing between the deep brain stimulation system set to “On” and “Off” status through the quantified acceleration signal data obtained by this recently developed conformal wearable and wireless system. The research achievement establishes a progressive pathway to the future objective of achieving deep brain stimulation capabilities that promote closed-loop acquisition of configuration parameters that are uniquely optimized to the individual through extrinsic means of a highly conformal wearable and wireless inertial sensor system and machine learning with access to Cloud computing resources. 展开更多
关键词 Parkinson’s Disease Deep Brain stimulation WEARABLE and WIRELEss systems CONFORMAL WEARABLE machine Learning Inertial sensor ACCELEROMETER WIRELEss ACCELEROMETER Hand Tremor Cloud Computing Network Centric THERAPY
下载PDF
Using Machine Reading to Understand Alzheimer's and Related Diseases from the Literature
13
作者 Satoshi Tsutsui Yi Bu Ying Ding 《Journal of Data and Information Science》 CSCD 2017年第4期81-94,共14页
Purpose: This paper aims to better understand a large number of papers in the medical domain of Alzheimer's disease (AD) and related diseases using the machine reading approach. Design/methodology/approach: The s... Purpose: This paper aims to better understand a large number of papers in the medical domain of Alzheimer's disease (AD) and related diseases using the machine reading approach. Design/methodology/approach: The study uses the topic modeling method to obtain an overview of the field, and employs open information extraction to further comprehend the field at a specific fact level. Findings: Several topics within the AD research field are identified, such as the Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS), which can help answer the question of how A1DS/HIV and AD are very different yet related diseases. Research limitations: Some manual data cleaning could improve the study, such as removing incorrect facts found by open information extraction. Practical implications: This study uses the literature to answer specific questions on a scientific domain, which can help domain experts find interesting and meaningful relations among entities in a similar manner, such as to discover relations between AD and AIDS/HIV. Origlnality/value: Both the overview and specific information from the literature are obtained using two distinct methods in a complementary manner. This combination is novel because previous work has only focused on one of them, and thus provides a better way to understand an important scientific field using data-driven methods. 展开更多
关键词 machine reading Alzheimer's disease Knowledge discovery Data mining
下载PDF
Classification of the Priority of Auditing XBRL Instance Documents with Fuzzy Support Vector Machines Algorithm
14
作者 Guang Yih Sheu 《Journal of Autonomous Intelligence》 2019年第2期1-13,共13页
Concluding the conformity of XBRL(eXtensible Business Reporting Language)instance documents law to the Benford's law yields different results before and after a company's financial distress.A new idea of apply... Concluding the conformity of XBRL(eXtensible Business Reporting Language)instance documents law to the Benford's law yields different results before and after a company's financial distress.A new idea of applying the machine learning technique to redefine the way conventional auditors work is therefore proposed since the unacceptable conformity implies a large likelihood of a fraudulent document.Fuzzy support vector machines models are developed to implement such an idea.The dependent variable is a fuzzy variable quantifying the conformity of an XBRL instance document to the Benford's law;whereas,independent variables are financial ratios.The interval factor method is introduced to express the fuzziness in input data.It is found the range of a fuzzy support vector machines model is controlled by maximum and minimum dependent and independent variables.Therefore,defining any member function to describe the fuzziness in input data is unnecessary.The results of this study indicate that the price-to-book ratio versus equity ratio is suitable to classify the priority of auditing XBRL instance documents with the less than 30%misclassification rate.In conclusion,the machine learning technique may be used to redefine the way conventional auditors work.This study provides the main evidence of applying a future project of training smart auditors. 展开更多
关键词 Fuzzy support vector machines ALGORITHM INTERVAL factor method Benford’s law XBRL AUDIT
下载PDF
CHINA'S SEWING MACHINE INDUSTRY
15
作者 Wang Chengkang China Sewing Machine Association 《China's Foreign Trade》 1996年第5期11-11,共1页
China’s export of sewing machinesstarted in the 1950s.At that time theButterfly brand household sewingmachine produced by the Shanghai XiechangSewing Machine Factory and the Tiger brandsewing machine produced by the ... China’s export of sewing machinesstarted in the 1950s.At that time theButterfly brand household sewingmachine produced by the Shanghai XiechangSewing Machine Factory and the Tiger brandsewing machine produced by the ShanghaiHuigong Sewing Machine Factory enjoyeda good reputation in Southeast Asia. Along with China’s reform and openingdrive and economic development,and on thebasis of changes in market demand,thesewing machine industry has conducted rapidadjustment to the product structure,withmore stress being placed on technicalintroduction and renovation.Under theleadership an support of the Ministry ofLight Industry,products have developed fromhousehold sewing machines to Industrialones.While meeting the domestic 展开更多
关键词 CHINA’s sEWING machine INDUsTRY
下载PDF
Rapid, accurate and serotype independent pipeline for in silico epitope mapping of SARS-CoV-2 antigens: a combined machine learning and Chou’s pseudo amino acid composition method
16
作者 Arash Rahmani Mokhtar Nosrati 《Medical Data Mining》 2023年第3期1-9,共9页
Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training... Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training dataset including 266 linear B-cell epitopes,1,267 T-cell epitopes and 1,280 non-epitopes were prepared.The epitope sequences were then converted to numerical vectors using Chou’s pseudo amino acid composition method.The vectors were then introduced to the support vector machine,random forest,artificial neural network,and K-nearest neighbor algorithms for the classification process.The algorithm with the highest performance was selected for the epitope mapping procedure.Based on the obtained results,the random forest algorithm was the most accurate classifier with an accuracy of 0.934 followed by K-nearest neighbor,artificial neural network,and support vector machine respectively.Furthermore,the efficacies of predicted epitopes by the trained random forest algorithm were assessed through their antigenicity potential as well as affinity to human B cell receptor and MHC-I/II alleles using the VaxiJen score and molecular docking,respectively.It was also clear that the predicted epitopes especially the B-cell epitopes had high antigenicity potentials and good affinities to the protein targets.According to the results,the suggested method can be considered for developing specific epitope predictor software as well as an accelerator pipeline for designing serotype independent vaccine against the virus. 展开更多
关键词 severe acute respiratory syndrome-like coronavirus machine learning Chou’s pseudo amino acid composition epitope based vaccine
下载PDF
Distinction of an Assortment of Deep Brain Stimulation Parameter Configurations for Treating Parkinson’s Disease Using Machine Learning with Quantification of Tremor Response through a Conformal Wearable and Wireless Inertial Sensor
17
作者 Robert LeMoyne Timothy Mastroianni +1 位作者 Donald Whiting Nestor Tomycz 《Advances in Parkinson's Disease》 2020年第3期21-39,共19页
Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Impe... Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span> 展开更多
关键词 Parkinson’s Disease Deep Brain stimulation Wearable and Wireless systems Conformal Wearable machine Learning Inertial sensor ACCELEROMETER Wireless Accelerometer Hand Tremor Cloud Computing Network Centric Therapy Python
下载PDF
Inductances Estimation in the d-q Axis for an Interior Permanent-Magnet Synchronous Machines with Distributed Windings
18
作者 Abdessamed Soualmi Frederic Dubas +2 位作者 Daniel Depemet Andry Randrai Christophe Espanet 《Journal of Energy and Power Engineering》 2013年第6期1178-1185,共8页
The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque an... The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation. 展开更多
关键词 Interior PM synchronous machine distributed winding d-q inductances Park's transformation reluctance torque cross-saturation.
下载PDF
Fong’s Sold the Biggest Jumboflow Dyeing Machine to Knit Concern
19
《China Textile》 2009年第11期16-16,共1页
Fong’s National recently shipped three sets of Jumboflow High Temperature Dyeing Machines (figure 1) to Bangladesh-based Knit Concern Ltd.,Of these three sets of machines,HSJ-8T-T28
关键词 Fong s sold the Biggest Jumboflow Dyeing machine to Knit Concern
下载PDF
A REVIEW OF THE HISTORY OF CHINA'S MACHINE DESIGN METHODS AND THE PROSPECT
20
作者 Yang Shuzi & Liu Kerning(Huazhong University of Science and Technology, Wuhan) CAS Member and president of Huazhong University of Science and Technology 《Bulletin of the Chinese Academy of Sciences》 1997年第2期175-184,共10页
This paper examines the history of China’s machine design methods and its status quo. First of all, it discusses machine design methods in ancient China. (1)The design idea of creation by the intelligent and expositi... This paper examines the history of China’s machine design methods and its status quo. First of all, it discusses machine design methods in ancient China. (1)The design idea of creation by the intelligent and exposition by the ingenious. (2)The design principle of the dependence of workmanship on criteria. (3)A macroscopic view of the object of design. (4)The design method of manufacture emphasizing shape. (5)Technological requirements on excellent material and consummate skill. Second, it discusses machine design ideas in ancient China. (1)The system idea in machine design, (2)The idea of machine design.(3)The idea of standardization in machine design. (4)The idea of automation in machine design. Finally, it discusses the status quo and a look ahead of the theory of machine design in China. 展开更多
关键词 A REVIEW OF THE HIsTORY OF CHINA’s machine DEsIGN METHODs AND THE PROsPECT
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部