Primary biliary cirrhosis (PBC) is a well-known but uncommon chronic liver disease that is presumed to be of autoimmune etiology. Recently, investigations in British Columbia (BC), a province of Canada situated along ...Primary biliary cirrhosis (PBC) is a well-known but uncommon chronic liver disease that is presumed to be of autoimmune etiology. Recently, investigations in British Columbia (BC), a province of Canada situated along the Pacific North-West of North America, have suggested that PBC is not a rare disease amongst BC's Aboriginal (i.e. First Nations) communities. Geographically, BC is adjacent to South East Alaska, an American state that has also reported an increased prevalence of PBC amongst its Aboriginal communities. In this article, the medical evidence supporting a hypothesis of increased risk of PBC amongst BC's First Nations communities is reviewed. Evidence suggesting that autoimmune hepatitis is also more likely amongst BC's First Nations communities is also presented.展开更多
Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as ...Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as tight gas reservoir of the Montney Formation, which consists of siltstone with subordinate interlaminated very fine-grained sandstone. The Montney Formation resource play is one of Canada’s prime unconventional hydrocarbon reservoir, with reserve estimate in British Columbia (Natural Gas reserve = 271 TCF), Liquefied Natural Gas (LNG = 12,647 million barrels), and oil reserve (29 million barrels). Based on sedimentological and ichnological criteria, five lithofacies associations were identified in the study interval: Lithofacies F-1 (organic rich, wavy to parallel laminated, black colored siltstone);Lithofacies F-2 (very fine-grained sandstone interbedded with siltstone);Lithofacies F-3A (bioturbated silty-sandstone attributed to the Skolithos ichnofacies);Lithofacies F-3B (bioturbated siltstone attributed to Cruziana ichnofacies);Lithofacies F-4 (dolomitic, very fine-grained sandstone);and Lithofacies F-5 (massive siltstone). The depositional environments interpreted for the Montney Formation in the study area are lower shoreface through proximal offshore to distal offshore settings. Rock-Eval data (hydrogen Index and Oxygen Index) shows that Montney sediments contains mostly gas prone Type III/IV with subordinate Type II kerogen, TOC ranges from 0.39 - 3.54 wt% with a rare spike of 10.9 wt% TOC along the Montney/Doig boundary. Vitrinite reflectance data and Tmax show that thermal maturity of the Montney Formation is in the realm of “peak gas” generation window. Despite the economic significance of the Montney unconventional “resource-play”, however, the location and predictability of the best reservoir interval remain conjectural in part because the lithologic variability of the optimum reservoir lithologies has not been adequately characterized. This study presents lithofacies and ichnofacies analyses of the Montney Formation coupled with Rock-Eval geochemistry to interpret the sedimentology, ichnology, and reservoir potential of the Montney Formation tight gas reservoir in Fort St. John study area (T86N, R23W and T74N, R13W), northeastern British Columbia, western Canada.展开更多
Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and the...Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area.展开更多
Oxygen isotope (δ18O) serves as paleothermometer, and provides paleotemperature for carbonates. δ18O signature was used to estimate the temperature of fractionation of dolomite and calcite in Montney Formation, empi...Oxygen isotope (δ18O) serves as paleothermometer, and provides paleotemperature for carbonates. δ18O signature was used to estimate the temperature of fractionation of dolomite and calcite in Montney Formation, empirically calculated to have precipitated, between approximately 13°C to ±33°C during Triassic time in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). Measurements of stable isotopes (δ13C and δ18O) fractionation, supported by quantitative X-ray diffraction evidence, and whole-rock geochemical characterization of the Triassic Montney Formation indicates the presence of calcite, dolomite, magnesium, carbon and other elements. Results from isotopic signature obtained from bulk calcite and bulk dolomite from this study indicates depleted δ13CPDB (-2.18‰ to -8.46‰) and depleted δ18OPDB (-3.54‰ to -16.15‰), which is interpreted in relation to oxidation of organic matter during diagenesis. Diagenetic modification of dolomitized very fine-grained, silty-sandstone of the Montney Formation may have occurred in stages of progressive oxidation and reduction reactions involving chemical elements such as Fe, which manifest in mineral form as pyrite, particularly, during early burial diagenesis. Such mineralogical changes evident in this study from petrography and SEM, includes cementation, authigenic quartz overgrowth and mineral replacement involving calcite and dolomite, which are typical of diagenesis. High concentration of chemical elements in the Montney Formation?-Ca and Mg indicates dolomitization. It is interpreted herein, that calcite may have been precipitated into the interstitial pore space of the intergranular matrix of very fine-grained silty-sandstone of the Montney Formation as cement by a complex mechanism resulting in the interlocking of grains.展开更多
Older adults in disaster contexts are often thought of as a passive, vulnerable population that lacks agency and capacities to cope in the aftermath. However, it can be argued that older adults may have underrecognize...Older adults in disaster contexts are often thought of as a passive, vulnerable population that lacks agency and capacities to cope in the aftermath. However, it can be argued that older adults may have underrecognized strengths that can be utilized pre-, peri-, and post-disaster. One of these strengths is older adults' unique social capital that stems from long-standing connections with other members of their respective communities. Using data from in-depth, semistructured interviews with farmers in British Columbia 3–11 months after the 2021 floods, this research explored the experiences of older adult farmers' recovery. The farmers discussed how they leveraged their social capital to aid in their recovery efforts from the flood event. By using their bonding social capital, older adult farmers transformed their existing, deep-rooted connections into post-disaster assistance. This, in turn, generated the idea of the therapeutic community, helping community members cope in the aftermath. This research indicated the need to further examine how older adults in disaster settings can be viewed as assets with community knowledge and skills as opposed to solely as a vulnerable population.展开更多
Stand-level retention is an important component of sustainable forest management which aims to balance ecological,social and economic objectives.Long-term retention of mature forest structures at the time of harvestin...Stand-level retention is an important component of sustainable forest management which aims to balance ecological,social and economic objectives.Long-term retention of mature forest structures at the time of harvesting(variable retention)is intended to produce future forest stands that more closely resemble conditions that develop after natural disturbances,thereby maintaining greater diversity of habitats for a variety of organisms.Structure includes features such as live and dead trees representing multiple canopy layers,undisturbed understory vegetation and coarse woody debris.Over the past two decades,variable retention has become common on forest lands in the temperate rainforests of coastal British Columbia(BC)and has been applied to a lesser extent in inland forest types.Our review of studies in BC and in similar forest types in our region indicates that both aggregated and dispersed retention can contribute to biodiversity conservation by providing short-term‘life-boating’habitat for some species and by enhancing the structural characteristics of future stands.For example,greater abundance of species present in the pre-harvest forest have been documented for vegetation,birds,carabid beetles,gastropods,ectomycorrhizal fungi and soil fauna in retention cutblocks compared to clearcuts.There are,however,some negative consequences for timber production such as wind damage to retained trees and reduced growth rates of tree regeneration compared to clearcuts.The authors suggest an adaptive management approach for balancing competing objectives when faced with uncertainty.This includes monitoring the implementation and effectiveness of various strategies for achieving goals.Over two decades of experience applying variable retention harvesting to industrial-scale management of forest lands in BC suggests that it is possible to balance production of wood with biodiversity conservation.展开更多
The physical, chemical and biological attributes of the Yukon River and tributary basins impact soil erosion, sediment transport and sediment delivery. The glacier, snow and permafrost melting, runoff, erosion, transp...The physical, chemical and biological attributes of the Yukon River and tributary basins impact soil erosion, sediment transport and sediment delivery. The glacier, snow and permafrost melting, runoff, erosion, transport, deposition and storage of gravelly, sandy, silty and clayey sediments determine the habitat distribution and water quality within the river channels and floodplains. The ecological functioning, with food and nutrient delivery, migratory cues, breeding, habitats, and riparian and floodplain ecological cycles are all dependent on the transported sediment at specific times of the year. Annual temperatures have been rising since the 1840s which could contribute to higher runoff water flows and greater sedimentation. The primary objective was to document the sedimentation in the Yukon watershed with little soil erosion as a result of agriculture or urban development. The causes of the soil erosion and sedimentation were permafrost, alpine glacial melting, drilling for gas and oil, road construction, gold mining, cold war military sites, pipeline construction, forest fires and steep slopes.展开更多
文摘Primary biliary cirrhosis (PBC) is a well-known but uncommon chronic liver disease that is presumed to be of autoimmune etiology. Recently, investigations in British Columbia (BC), a province of Canada situated along the Pacific North-West of North America, have suggested that PBC is not a rare disease amongst BC's Aboriginal (i.e. First Nations) communities. Geographically, BC is adjacent to South East Alaska, an American state that has also reported an increased prevalence of PBC amongst its Aboriginal communities. In this article, the medical evidence supporting a hypothesis of increased risk of PBC amongst BC's First Nations communities is reviewed. Evidence suggesting that autoimmune hepatitis is also more likely amongst BC's First Nations communities is also presented.
文摘Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as tight gas reservoir of the Montney Formation, which consists of siltstone with subordinate interlaminated very fine-grained sandstone. The Montney Formation resource play is one of Canada’s prime unconventional hydrocarbon reservoir, with reserve estimate in British Columbia (Natural Gas reserve = 271 TCF), Liquefied Natural Gas (LNG = 12,647 million barrels), and oil reserve (29 million barrels). Based on sedimentological and ichnological criteria, five lithofacies associations were identified in the study interval: Lithofacies F-1 (organic rich, wavy to parallel laminated, black colored siltstone);Lithofacies F-2 (very fine-grained sandstone interbedded with siltstone);Lithofacies F-3A (bioturbated silty-sandstone attributed to the Skolithos ichnofacies);Lithofacies F-3B (bioturbated siltstone attributed to Cruziana ichnofacies);Lithofacies F-4 (dolomitic, very fine-grained sandstone);and Lithofacies F-5 (massive siltstone). The depositional environments interpreted for the Montney Formation in the study area are lower shoreface through proximal offshore to distal offshore settings. Rock-Eval data (hydrogen Index and Oxygen Index) shows that Montney sediments contains mostly gas prone Type III/IV with subordinate Type II kerogen, TOC ranges from 0.39 - 3.54 wt% with a rare spike of 10.9 wt% TOC along the Montney/Doig boundary. Vitrinite reflectance data and Tmax show that thermal maturity of the Montney Formation is in the realm of “peak gas” generation window. Despite the economic significance of the Montney unconventional “resource-play”, however, the location and predictability of the best reservoir interval remain conjectural in part because the lithologic variability of the optimum reservoir lithologies has not been adequately characterized. This study presents lithofacies and ichnofacies analyses of the Montney Formation coupled with Rock-Eval geochemistry to interpret the sedimentology, ichnology, and reservoir potential of the Montney Formation tight gas reservoir in Fort St. John study area (T86N, R23W and T74N, R13W), northeastern British Columbia, western Canada.
文摘Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area.
文摘Oxygen isotope (δ18O) serves as paleothermometer, and provides paleotemperature for carbonates. δ18O signature was used to estimate the temperature of fractionation of dolomite and calcite in Montney Formation, empirically calculated to have precipitated, between approximately 13°C to ±33°C during Triassic time in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). Measurements of stable isotopes (δ13C and δ18O) fractionation, supported by quantitative X-ray diffraction evidence, and whole-rock geochemical characterization of the Triassic Montney Formation indicates the presence of calcite, dolomite, magnesium, carbon and other elements. Results from isotopic signature obtained from bulk calcite and bulk dolomite from this study indicates depleted δ13CPDB (-2.18‰ to -8.46‰) and depleted δ18OPDB (-3.54‰ to -16.15‰), which is interpreted in relation to oxidation of organic matter during diagenesis. Diagenetic modification of dolomitized very fine-grained, silty-sandstone of the Montney Formation may have occurred in stages of progressive oxidation and reduction reactions involving chemical elements such as Fe, which manifest in mineral form as pyrite, particularly, during early burial diagenesis. Such mineralogical changes evident in this study from petrography and SEM, includes cementation, authigenic quartz overgrowth and mineral replacement involving calcite and dolomite, which are typical of diagenesis. High concentration of chemical elements in the Montney Formation?-Ca and Mg indicates dolomitization. It is interpreted herein, that calcite may have been precipitated into the interstitial pore space of the intergranular matrix of very fine-grained silty-sandstone of the Montney Formation as cement by a complex mechanism resulting in the interlocking of grains.
基金supported by the Institute for Catastrophic Loss Reduction (ICLR)’s quick response research program: 2021 British Columbia’s Fraser Valley Floodingfunding from the Canada Research Chairs Program (Award # CRC-2020-00128)。
文摘Older adults in disaster contexts are often thought of as a passive, vulnerable population that lacks agency and capacities to cope in the aftermath. However, it can be argued that older adults may have underrecognized strengths that can be utilized pre-, peri-, and post-disaster. One of these strengths is older adults' unique social capital that stems from long-standing connections with other members of their respective communities. Using data from in-depth, semistructured interviews with farmers in British Columbia 3–11 months after the 2021 floods, this research explored the experiences of older adult farmers' recovery. The farmers discussed how they leveraged their social capital to aid in their recovery efforts from the flood event. By using their bonding social capital, older adult farmers transformed their existing, deep-rooted connections into post-disaster assistance. This, in turn, generated the idea of the therapeutic community, helping community members cope in the aftermath. This research indicated the need to further examine how older adults in disaster settings can be viewed as assets with community knowledge and skills as opposed to solely as a vulnerable population.
基金by the Province of British Columbia(BC Ministry of Forests,Lands,Natural Resource Operations and Rural DevelopmentBC Forest Investment Account,Land Based Investment ProgramBC Forest Science Program),the University of British Columbia and forest companies(Cascadia Forest Products,MacMillan Bloedel Limited,Western Forest Products Inc.,Weyerhaeuser Company).Other than the scientists and field personnel directly involved in the research,the funding bodies did not have a role in the design of the studies,in the collection,analysis,and interpretation of data,and in writing the manuscript.
文摘Stand-level retention is an important component of sustainable forest management which aims to balance ecological,social and economic objectives.Long-term retention of mature forest structures at the time of harvesting(variable retention)is intended to produce future forest stands that more closely resemble conditions that develop after natural disturbances,thereby maintaining greater diversity of habitats for a variety of organisms.Structure includes features such as live and dead trees representing multiple canopy layers,undisturbed understory vegetation and coarse woody debris.Over the past two decades,variable retention has become common on forest lands in the temperate rainforests of coastal British Columbia(BC)and has been applied to a lesser extent in inland forest types.Our review of studies in BC and in similar forest types in our region indicates that both aggregated and dispersed retention can contribute to biodiversity conservation by providing short-term‘life-boating’habitat for some species and by enhancing the structural characteristics of future stands.For example,greater abundance of species present in the pre-harvest forest have been documented for vegetation,birds,carabid beetles,gastropods,ectomycorrhizal fungi and soil fauna in retention cutblocks compared to clearcuts.There are,however,some negative consequences for timber production such as wind damage to retained trees and reduced growth rates of tree regeneration compared to clearcuts.The authors suggest an adaptive management approach for balancing competing objectives when faced with uncertainty.This includes monitoring the implementation and effectiveness of various strategies for achieving goals.Over two decades of experience applying variable retention harvesting to industrial-scale management of forest lands in BC suggests that it is possible to balance production of wood with biodiversity conservation.
文摘The physical, chemical and biological attributes of the Yukon River and tributary basins impact soil erosion, sediment transport and sediment delivery. The glacier, snow and permafrost melting, runoff, erosion, transport, deposition and storage of gravelly, sandy, silty and clayey sediments determine the habitat distribution and water quality within the river channels and floodplains. The ecological functioning, with food and nutrient delivery, migratory cues, breeding, habitats, and riparian and floodplain ecological cycles are all dependent on the transported sediment at specific times of the year. Annual temperatures have been rising since the 1840s which could contribute to higher runoff water flows and greater sedimentation. The primary objective was to document the sedimentation in the Yukon watershed with little soil erosion as a result of agriculture or urban development. The causes of the soil erosion and sedimentation were permafrost, alpine glacial melting, drilling for gas and oil, road construction, gold mining, cold war military sites, pipeline construction, forest fires and steep slopes.