期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
1
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression
2
作者 Jiyun Xu Hanzhang Li +1 位作者 Haijun Wang Lei Tang 《Deep Underground Science and Engineering》 2023年第1期37-51,共15页
Fractures are widely present in geomaterials of civil engineering and deep underground engineering.Given that geomaterials are usually brittle,the fractures can significantly affect the evaluation of underground engin... Fractures are widely present in geomaterials of civil engineering and deep underground engineering.Given that geomaterials are usually brittle,the fractures can significantly affect the evaluation of underground engineering construction safety and the early warning of rock failure.However,the crack initiation and propagation in brittle materials under composite loading remain unknown so far.In this study,a three-dimensional internal laser-engraved cracking technique was applied to produce internal cracks without causing damage to the surfaces.The uniaxial compression tests were performed on a brittle material with internal cracks to investigate the propagation of these internal cracks at different dip angles under compression and shear.The test results show that the wing crack propagation mainly occurs in the specimen with an inclined internal crack,which is a mixed-ModeⅠ–Ⅱ–Ⅲfracture;in contrast,ModeⅠfracture is present in the specimen with a vertical internal crack.The fractography characteristics of ModeⅢfracture display a lance-like pattern.The fracture mechanism in the brittle material under compression is that the internal wing cracks propagate to the ends of the whole sample and cause the final failure.The initial deflection angle of the wing crack is determined by the participation ratio of stress intensity factors KII to KI at the tip of the internal crack. 展开更多
关键词 3D-ILC brittle materials internal crack penny-shaped crack rock fracture uniaxial compression
下载PDF
Research on Ultrasonic Vibration Grinding of the Hard and Brittle Materials 被引量:4
3
作者 YANG Xin-hong HAN Jie-cai +2 位作者 ZHANG Yu-min ZUO Hong-bo ZHANG Xue-jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期9-13,共5页
It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker... It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker wear and tear of grinding tools, lower efficiency and so on. Ultrasonic vibration grinding (UVG) which combines ultrasonic machining and grinding emerged as a developing and promising technique in recent years. In this paper, experimental studies on UVG were conducted on several kinds of hard and brittle material by altering processing parameters such as vibration frequency and its amplitude, diamond abrasive grit size, cutting depth, feeding speed and rotary speed of tools. The experimental results show that alteration in any of above mentioned parameters will bring effects on the processed surface finish of these materials. Of them, the diamond abrasive grit size has the greatest. Moreover, conventional grinding experiments were also carried out on these materials. By comparison, it was found that the UVG is superior to the conventional method in terms of the ground surface quality, the working efficiency and the wear rate of tools. 展开更多
关键词 ultrasonic vibration grinding (UVG) hard and brittle materials surface roughness wear extent
下载PDF
MICROMECHANICAL MODELLING OF STRAIN SOFTENING IN MICROCRACK-WEAKENED QUASI-BRITTLE MATERIALS 被引量:1
4
作者 Feng Xiqiao Yu Shouwen(Dept.of Engineering Mechanics,Tsinghua University,Beijing 100084,P.R.China) 《Acta Mechanica Solida Sinica》 SCIE EI 1995年第2期121-132,共12页
By using the concept of domain of microcrack growth(DMG),the micromechanisms of damage in quasi-brittle materials subjected to triaxial either tensile or compressive loading are investigated and the complete strew-str... By using the concept of domain of microcrack growth(DMG),the micromechanisms of damage in quasi-brittle materials subjected to triaxial either tensile or compressive loading are investigated and the complete strew-strain relation including four stages is obtained from micromechanical analysis.The regime of pre-peak nonlinear hardening corresponds to the distributed damage,i.e.the stable propagation of microcracks.After the attainment of the ultimate strength of load-bearing capacity, some microcracks experience the second unstable growth and the distributed damage is transmitted to the localization of damage.These analyses improve our understanding of the hardening and softening behaviors of quasi-brittle materials. 展开更多
关键词 MICROCRACKS strain softening constitutive relation MICROMECHANICAL damage mechanics brittle material
下载PDF
3-D NUMERICAL SIMULATION OF FRACTURE PROCESSES IN HETEROGENEOUS BRITTLE MATERIALS
5
作者 Chen Yongqiang Yao Zhenhan Zheng Xiaoping 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期332-341,共10页
By using the lattice model combined with finite element methods andstatistical techniques, a numerical approach is developed to establish mechanical models ofthree-dimensional heterogeneous brittle materials. A specia... By using the lattice model combined with finite element methods andstatistical techniques, a numerical approach is developed to establish mechanical models ofthree-dimensional heterogeneous brittle materials. A special numerical code is introduced, in whicha lattice model and statistical approaches are used to simulate the initial heterogeneity ofmaterial properties. The size of displacement-load step is adap-tively determined so that only fewelements would fail in each load step. When the tensile principal strain in an element exceeds theultimate strain of this element, the element is considered broken and its Young's modulus is set tobe very low. Some important behaviors of heterogeneous brittle materials are indicated using thiscode. Load-displacement curves and figures of three-dimensional fracture patterns are alsonumerically obtained, which are similar to those observed in laboratory tests. 展开更多
关键词 heterogeneous materials brittle materials lattice model fractureprocess three-dimensional model numerical simulation statistical methods
下载PDF
The Stress Analysis for Notched Specimen of Brittle Material under Plane Dead Loading
6
作者 Zhu Qifang He Yaozu General Research Institute for Non-ferrous Metals,Beijing 《Rare Metals》 SCIE EI CAS CSCD 1989年第4期44-48,共5页
The stress distribution of notched specimen of brittle material under a plane pressure was studied using a photoelastic meth- od,When elastic deformation appeared inside the specimen,the force transferred by dowel par... The stress distribution of notched specimen of brittle material under a plane pressure was studied using a photoelastic meth- od,When elastic deformation appeared inside the specimen,the force transferred by dowel part was triangular transverse force and frictional force on the upper surface of the sample.The quantity of the frictional force was about 31 percent of transverse force.The stress inside the sample was linear along the central cross section of the sample and there was maximum tensile stress σ_y at the tip of the notch.Basing on shearing stress deviation method,the tensile stress σ_y,σ_x and shearing stress τ_(xy) at the cen- tral sections and four adjacent cross sections were calculated.The result pointed out that σ_x and τ_(xy) were smaller than σ_y.There- fore,σ_y was the main factor for crack formation and propagation. 展开更多
关键词 PR The Stress Analysis for Notched Specimen of brittle material under Plane Dead Loading
下载PDF
Femtosecond laser-induced periodic surface structures on hard and brittle materials
7
作者 ZHAO GuoXu WANG Gong +6 位作者 LI YunFei WANG Lei LIAN YuDong YU Yu ZHAO Hui WANG YuLei LU ZhiWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期19-36,共18页
Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate... Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate materials,and quantum information,especially under harsh conditions,such as high temperatures and high pressures.Femtosecond laser direct writing technology has greatly promoted the development of femtosecond laser-induced periodic surface structure(Fs-LIPSS or LIPSS by a femtosecond laser)applications of hard and brittle materials due to its high precision,controllability,and three-dimensional processing ability.Thus far,LIPSSs have been widely used in material surface treatment,optoelectronic devices,and micromechanics.However,a consensus has not been reached regarding the formation mechanism of LIPSSs on hard and brittle materials.In this paper,three widely accepted LIPSS formation mechanisms are introduced,and the characteristics and applications of LIPSSs on diamonds,silicon,silicon carbide,and fused silica surfaces in recent years are summarized.In addition,the application prospects and challenges of LIPSSs on hard and brittle materials by a femtosecond laser are discussed. 展开更多
关键词 laser-induced periodic surface structures hard and brittle materials femtosecond laser
原文传递
A review on ductile mode cutting of brittle materials 被引量:7
8
作者 Elijah Kwabena ANTWI Kui LIU Hao WANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第2期251-263,共13页
Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials b... Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteris- tics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously. 展开更多
关键词 ductile mode cutting brittle materials critical undeformed chip thickness brittle-ductile transition subsurface damage molecular dynamic simulation
原文传递
QUASI-MICROMECHANICAL CONSTITUTIVE THEORY FOR BRITTLE DAMAGED MATERIALS UNDER TENSION 被引量:3
9
作者 Feng Xiqiao Yu Shouwen 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第3期200-207,共8页
One of fundamental but difficult problems in damage mechanics isthe formulation of the ef- fective constitutive relation ofmicrocrack-weakened brittle o quasi-brittle materials under complexloading, especially when mi... One of fundamental but difficult problems in damage mechanics isthe formulation of the ef- fective constitutive relation ofmicrocrack-weakened brittle o quasi-brittle materials under complexloading, especially when microcrack interaction is taken intoaccount. The combination of phenomenological and mi- cromechanicaldamage mechanics is a promising approach to construction andapplicable damage model with a firm physical foundation. 展开更多
关键词 constitutive relation quasi-micromechanical model brittle material
下载PDF
Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials 被引量:2
10
作者 Xiaoguang GUO Qiang LI +3 位作者 Tao LIU Renke KANG Zhuji JIN Dongming GUO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第1期89-98,共10页
Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However,... Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed. 展开更多
关键词 MD simulation ultra-precision machining hard and brittle materials machining mechanism REVIEW
原文传递
Theoretical Analysis of Crack Propagation Measurement for Brittle Materials Based on Virtual Principal Strain Field
11
作者 Liuning Gu Xinxing Shao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第5期842-850,共9页
The measurement of crack propagation is crucial for revealing the fracture mechanical properties of materials and structures.Based on the virtual principal strain field and Steger’s algorithm,an accurate and automati... The measurement of crack propagation is crucial for revealing the fracture mechanical properties of materials and structures.Based on the virtual principal strain field and Steger’s algorithm,an accurate and automatic method has been proposed for measuring the geometric parameters of crack propagation.The measured geometric parameters of crack propagation include the width,length,and tip location of each crack.The mechanism of the crack-induced virtual principal strain field and the effects of subset,step,and strain window size are analyzed and discussed theoretically.The effectiveness of the derived theoretical equations is verified by the simulation experiments.According to the theoretical equations,it is determined that the distribution of the virtual principal strain field near the crack is similar to the grayscale distribution of the laser fringe image with optimized calculation parameters.Experiments are further conducted to validate the effectiveness of the derived equations.With the optimized calculation parameters,the minimum crack that can be measured is approximately 0.0362 pixel in the laboratory environment,while the measurement error of the crack width is less than 0.025 pixel for two-dimensional digital image correlation(DIC)and 0.020 pixel for three-dimensional DIC. 展开更多
关键词 Crack propagation brittle materials Digital image correlation Virtual principal strain Steger’s algorithm
原文传递
A Novel Method for Measuring Flexure Strength of Brittle Materials
12
作者 谢书银 石志仪 施锦行 《Rare Metals》 SCIE EI CAS CSCD 1999年第1期76-79,共4页
A novel test method to measure flexure strength for silicon slices and other brittle materials was suggested by using simple supported circular slice samples and steel ball impact loading. The maximal tensile stress e... A novel test method to measure flexure strength for silicon slices and other brittle materials was suggested by using simple supported circular slice samples and steel ball impact loading. The maximal tensile stress expression under concentrating impact load for center of simple supported circular plate was derived based on kinetic energy theorem and small deflection theory of thin plate. The instrument used in the method is simple, the test results are accurate, and the test does not need large scale loading apparatus. An experimental correct method was presented for test results deviated from small deflection limit when the slices were thinner or the strength of slice was higher. 展开更多
关键词 brittle material Flexure strength Test method
下载PDF
A NEW DAMAGE MODEL FOR MICROCRACK-WEAKENED BRITTLE SOLIDS 被引量:6
13
作者 冯西桥 余寿文 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1993年第3期251-260,共10页
In the present paper, a micromechanically based damage model for microcrack-weakened solids is developed. The concept of the domain of microcrack growth (DMG) is defined and used to describe the damage state and the a... In the present paper, a micromechanically based damage model for microcrack-weakened solids is developed. The concept of the domain of microcrack growth (DMG) is defined and used to describe the damage state and the anisotropic properties of brittle materials. After choosing an appropriate fracture criterion of microcrack, we obtain the analytical expression of DMG under a monotonically in- creasing proportional plane stress. Under a complex loading path, the evolution equation of DMG and the overall effective compliance tensor of damaged materials are given. 展开更多
关键词 damage model brittle material constitutive relation
下载PDF
Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application 被引量:9
14
作者 Dongshi Zhang Liang-Chun Wu +2 位作者 Masashi Ueki Yoshihiro Ito Koji Sugioka 《International Journal of Extreme Manufacturing》 EI 2020年第4期29-47,共19页
This paper presents a new technique,termed femtosecond laser shock peening ablation in liquids(fs-LSPAL),which can realize simultaneous crack micro/nanomanufacturing and hierarchical micro/nanolaser ablation,giving ri... This paper presents a new technique,termed femtosecond laser shock peening ablation in liquids(fs-LSPAL),which can realize simultaneous crack micro/nanomanufacturing and hierarchical micro/nanolaser ablation,giving rise to the formation of diverse multiscale hierarchical structures,such as macroporous ratcheted structures and enéchelon microfringes decorated with parabolic nanoripples.Through analysis of surface morphologies,many phenomena have been confirmed to take place during fs-LSPAL,including enéchelon cracks,nanostriation,ripple densification,crack branching,and selective formation of high spatial frequency laser-induced periodic surface structures of 100–200 nm in period.At a high laser power of 700 mW,fs-LSPAL at scanning speeds of 0.2 mm s^-1 and 1 mm s^-1 enables the generation of height-fluctuated and height-homogeneous hierarchical structures,respectively.The height-fluctuated structures can be used to induce‘colony’aggregates of embryonic EB3 stem cells.At 200 mW,fs-LSPAL at 1 mm s^-1 is capable of producing homogeneous tilt macroporous structures with cracked structures interleaved among them,which are the synergistic effects of bubble-induced light refraction/reflection ablation and cracks.As shown in this paper,the conventional laser ablation technique integrated with its self-driven unconventional cracking under extreme conditions expands the horizons of extreme manufacturing and offers more opportunities for complex surface structuring,which can potentially be used for biological applications. 展开更多
关键词 femtosecond laser shock peening ablation SHOCKWAVES MACROPOROUS enéchelon crack STRIATIONS brittle materials stem cell culture
下载PDF
Fracturing damage process in dynamic split experiments of a brittle glass
15
作者 Ning Cui Linmao Ye Kaixin Liu 《Theoretical & Applied Mechanics Letters》 2012年第6期9-14,共6页
In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split e... In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split experiment is also performed by using the split Hopkinson pressure bar. Then the numerical results correspond closely to those obtained by experiments, and the fracturing damage mode shows that the sample under high strain rate loading would crack along vertical diameter in the band region between two loading edges, which differs from the static damage mode. Furthermore, by comparing a group of contrast numerical tests, the numerical results prove that loading area upon the top side of samples would influence the fracture mode of dynamic split experiments, which indicates that the narrow loading plane is better. 展开更多
关键词 discrete element method dynamic split test brittle material crack band
下载PDF
Methods for Detection of Subsurface Damage:A Review 被引量:15
16
作者 Jing-fei Yin Qian Bai Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期23-36,共14页
Subsurface damage is easily induced in machining of hard and brittle materials because of their particular mechani?cal and physical properties. It is detrimental to the strength,performance and lifetime of a machined ... Subsurface damage is easily induced in machining of hard and brittle materials because of their particular mechani?cal and physical properties. It is detrimental to the strength,performance and lifetime of a machined part. To manu?facture a high quality part,it is necessary to detect and remove the machining induced subsurface damage by the subsequent processes. However,subsurface damage is often covered with a smearing layer generated in a machining process,it is rather di cult to directly observe and detect by optical microscopy. An e cient detection of subsur?face damage directly leads to quality improvement and time saving for machining of hard and brittle materials. This paper presents a review of the methods for detection of subsurface damage,both destructive and non?destructive. Although more reliable,destructive methods are typically time?consuming and confined to local damage infor?mation. Non?destructive methods usually su er from uncertainty factors,but may provide global information on subsurface damage distribution. These methods are promising because they can provide a capacity of rapid scan and detection of subsurface damage in spatial distribution. 展开更多
关键词 Subsurface damage Hard and brittle material Taper polishing MEASUREMENT Laser scattering
下载PDF
Research on Cutting Force of Ultrasonic Diamond Wire Saw 被引量:5
17
作者 张辽远 李鑫 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期114-118,共5页
Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutti... Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutting forces with and without ultrasonic effect were analyzed theoretically and experimentally.The results indicate that the cutting force of diamond wire increases along with the spindle speed decrease and the lateral pressure increase.The force in ultrasonic vibration cutting is about 20% to 30% less than that in conventional cutting.Also,the cutting trajectory of single diamond grit in sawing process is simulated,and the reason that the ultrasonic vibration can reduce the cutting force is explained further. 展开更多
关键词 machinofature technique and equipment mechanics manufacturing process hard and brittle material electroplated diamond wire saw ultrasonic machining
下载PDF
High Efficiency ELID Grinding of Garnet Ferrite 被引量:4
18
作者 ZHANG Fei-hu 1, QIU Zhong-jun 1, KANG Gui-wen 1, YUAN Zhe-jun 1, YANG Yong-shan 2, SHI Xing-kuan 2 (1. Department of Mechanical Manufacturing and Automation, Harbin Institute of Technology, Harbin 150001, China 2. Beijing Radio Measuring Institute, Beijing 100854, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期1-,共1页
Hard and brittle materials such as ferrite, optical glass and ceramics have been widely used in many fields because of their good characteristics and still gain more attentions. However, it is difficult to machine and... Hard and brittle materials such as ferrite, optical glass and ceramics have been widely used in many fields because of their good characteristics and still gain more attentions. However, it is difficult to machine and get good surface quality. Some parts made of these materials have large machining allowances and need to be produced with large batch, but the machining efficiency is very low with usual grinding method. So it is of great importance to research the high efficiency grinding technology of hard and brittle materials. Electrolytic in-process dressing (ELID) grinding is a new grinding technology which has been adopted to the ultra-precision machining of hard and brittle materials. With the function of in-process dressing of metal bond diamond and CBN wheel, ELID grinding has the ability to keep the sharpness of the wheel surface and is widely used in fine abrasive grinding, but it also has the potentialities to high efficiency grinding. In this paper, the mechanism of ELID grinding and its grinding performance are analyzed, then the cast iron bond diamond wheels and ELID grinding device are used on a surface grinder to research the feasibility of ELID grinding to high efficiency grinding. To make comparison, the garnet ferrite (YAG) work piece has been machined in plunge grinding both by ELID grinding and by the resin bond diamond wheel. The grinding force and surface quality are tested and analyzed. It has been found that the grinding force of the cast iron bond diamond wheel with ELID grinding is apparently smaller than that of the resin bond diamond wheel. Under the same conditions, it is about 2/5~3/5 as the force using the resin bond diamond wheel. So with the same grinder and machining conditions, ELID grinding can machine work piece with greater depth of cut. Because of the smaller grinding force, it is also beneficial to avoid the edge collapse of the work piece and keep the integrity of the grinding surface. This experiment shows that the grinding efficiency can be highly improved and the surface quality be ensured by applying ELID grinding technology and adopting large grinding depth. The results indicate that the ELID grinding technology can be effectively used in the high efficiency machining of garnet ferrite and other hard and brittle materials. 展开更多
关键词 GRINDING ELID grinding hard and brittle material FERRITE
下载PDF
A review on glass welding by ultra-short laser pulses 被引量:5
19
作者 Kristian Cvecek Sarah Dehmel +1 位作者 Isamu Miyamoto Michael Schmidt 《International Journal of Extreme Manufacturing》 2019年第4期1-10,共10页
Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting no... Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers. 展开更多
关键词 USP glass welding ultra-short pulsed laser processing brittle materials glass joining
下载PDF
Analysis of Mode-Ⅰ Crack Tip Shielding by Microcracking in Brittle Materials
20
作者 冯西桥 余寿文 《Tsinghua Science and Technology》 SCIE EI CAS 1997年第2期7-12,共6页
The stress shielding effect of profuse microcracks at the tip of a macroscopic stationary mode Ⅰ crack is studied. The analysis method adopted combines the micromechanical approach with the effective elastic med... The stress shielding effect of profuse microcracks at the tip of a macroscopic stationary mode Ⅰ crack is studied. The analysis method adopted combines the micromechanical approach with the effective elastic medium approach. The anisotropic constitutive relation of the effective elastic medium is based on the DMG damage model developed by the authors for microcrack weakened brittle materials undergoing damage in form of elastic modulus degradation as a result of stable microcrack growth. The stress and strain fields at the crack tip and the condition of path independence of J integral in the damage zone are discussed under some reasonable approximations. A modified J integral method is thereby proposed to calculate the ratio of near tip to remote stress intensity factors and compared with the conventional method of J conservation. 展开更多
关键词 shielding effect damage mechanics J integral toughening mechanism MICROCRACK brittle material
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部