A succession and silviculture model (ZELIG.CBA) for broad-leaved Korean pine forest of Changbai Moutain Area was developed based on the framework of ZELIG model and characteristics of Broad-leaved Korean pine forests ...A succession and silviculture model (ZELIG.CBA) for broad-leaved Korean pine forest of Changbai Moutain Area was developed based on the framework of ZELIG model and characteristics of Broad-leaved Korean pine forests of Changbai area. ZELIG.CBA model consists four sub-models: growth model simulating annual increment of individual tree in forest, regeneration model simulating annual establishment of different tree species, mortality model simulating annual agerelated and stress-related morality; and silviculture model simulating the forest response to different silviculture scenario. The validation of the ZELIG.CBA showed that the accuracy of the model for the forest growth was more than 95%. The succession from clear cutting site simulating showed that the ZELIG.CBA model was stable for long term simulation. And selective cutting experiment showed that the optimal scenario for broad-leaved Korean pine forests was removal volume 30% combining with 30a rotation.展开更多
With the concem of regcneration, characteristics of canopy gaps in broad-leaved Korean pine forest were studied.The areas of actual gap, expanded gap and maximum gap were analyzed respectively. The species composition...With the concem of regcneration, characteristics of canopy gaps in broad-leaved Korean pine forest were studied.The areas of actual gap, expanded gap and maximum gap were analyzed respectively. The species composition, number, origin,decayed class and sizes of gap makers were studied comprehensively. The comparative studies of regencration inside and outside of canopy gap showed that the density of regeneration inside canopy gaps was 30% higher than that outside canopy gaps. The specific species regeneration response to canopy gap varied greatly. Pinus koraiensis, Picea jezoensis Frarinlis nla)ldshurica, JItghI)ls )nalJholu-i`a and Acer mono generally did not response to canopy gap disturbance. The Regeneration Importantce Valuc (RIV) of Abies nephrolepis, Ulmus Japonica increased with canopy gap disturbance. RIV of Tilia amurensis, Acer madshurica and Ulmus laciniata decreased with canopy gap disturbance. Canopy gap disturbance was not strong enough to result in the regeneration of some rpecies of shade intolerance such as Larix olgensis, Betula platyphylla.展开更多
The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilitie...The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.展开更多
The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static clos...The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static closed chamber technique in a typical broad-leaved/Korean pine mixed forest area on the northern slope of Changbai Mountain, Jilin Province, China. The experiment was carried out through the day and night in the growing season (from June to September) in situ and sample gas was analyzed by a gas chromatograph. Results showed that the forest floor was a large net source of carbon, and soil CO2 fluxes had an obvi-ous law of seasonal and diel variation. The soil CO2 flux of broad-leaved/Korean pine mixed forest was in the range of 0.302.42 mmol穖-2穝-1 with the mean value of 0.98 mmol穖-2穝-1. An examination on the seasonal pattern of soil CO2 emission suggested that the variability in soil CO2 flux could be correlated with variations in soil temperature, and the maximum of mean CO2 flux occurred in July ((1.27±23%) mmol穖-2穝-1) and the minimum was in September ((0.50±28%) mmol穖-2穝-1). The fluctuations in diel soil CO2 flux were also correlated with changes in soil temperature; however, there existed a factor for a time lag. Soil CO2 flux from the forest floor was strongly related to soil temperature and had the highest correlation with temperature at 6-cm depth of soil. Q10 values based on air temperature and soil temperature of different soil depths were at the ranges of 2.09–3.40.展开更多
A 112 m×8 m sample pot which includes 14 sub-plots was set up along the slope in Hongshi Forestry Farm of Baihe Forestry Bureau (127°55′E, 42°30′ N), Jilin Province in August 2002. Community structure...A 112 m×8 m sample pot which includes 14 sub-plots was set up along the slope in Hongshi Forestry Farm of Baihe Forestry Bureau (127°55′E, 42°30′ N), Jilin Province in August 2002. Community structure, soil moisture contents at 0–10 cm and 10–20 cm in depth, water content of litter as well as the contents of C, N and P of litter, living leaves and branches in the broad-leaved/Korean pine (Pinus korraiensis) forest were measured in each sub-plot on different slope positions. The analytical results showed that there existed an obvious soil moisture gradient along the slope: upper slope <middle slope< lower slope. The difference in soil moisture contents on different positions of slope led to a change of the stand structure of the braod-leaved/Korean pine forest. The proportion ofQuercus mongolica gradually increased with the decrease of soil moisture content and that of other major tree species in the broad-leaved/Korean pine forest gradually decreased or disappeared. The dynamic of soil moisture contents in the litter layer was as same as that in mineral soils. The decomposition rates of the litter on different slope positions were different and the dry weights of existent litter varied significantly. The soil nutrients in the litter on the lower slope was richer than that on the upper slope due to the different stand structure on the different slope positions. The moisture content and nutrient contents of soil had effects on the composition, decomposition, and the nutrient release of litter, thus affecting stands growth and stand structure and finally leading to the change of ecosystem. Key words Soil moisture gradient - nutrient - Stand structure - Broad-leaved/Korean pine forest CLC number S718.5 Document code A Foundation item: This study was supported by the NKBRSF (G1999043407-1), Tackle Key Problem of Science and technology of China (2001BA510B-07), Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-406, SCXZD0101), NKTRDP (2001BA510B-07. 2002BA516A20).Biography: WANG Yan (1970-), female, Ph. D, associate professorResponsible editor: Song Funan展开更多
Using the closed chamber technique, the in situ measurements of N2O and CH4 fluxes was conducted in a broad-leaved Korean pine mixed forest ecosystem in Changbai Mountain, China. from June 1994 to october 1995. The re...Using the closed chamber technique, the in situ measurements of N2O and CH4 fluxes was conducted in a broad-leaved Korean pine mixed forest ecosystem in Changbai Mountain, China. from June 1994 to october 1995. The relationships between fluxes (N2O and CH4) and some major environmental factors (temperature, soil water content and soil availabIe nitrogen) were studied. A significant positive correlation between Nzo emission and air/soil temperature was observed, but no significant correIation was found between N2O emission and soil water content (SWC). This result showed that temperature was an important controlling factor of N2O flux. There was a significant correlation between CH4 uptake and SWC, but no significant correlation was found between CH4 uptake and temperature. This suggested SWC was an important factor controlling CH4 uptake. The very significant negative correlation between logarithmic N2O flux and soil nitrate concentration, significant negative correlation between CH4 flux and soil ammonium content were also found.展开更多
Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and anin-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation amon...Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and anin-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation among four coexisting dominant tree species, includingPinus koraiensis, Tilia amurensis, Fraxinus mandshurica andAcer mono, in a virgin mixed broad-leaved/Korean pine (Pinus koraiensis) forest. The soil study included individual horizons of L+F (0–5 cm), Ah (5–11 cm) and Aw (11–25 cm). All four species had nitrate and ammonium in their roots and leaves, and also NRA in leaves. This indicated that these coexisting species were adapted to ammonium + nitrate nutrition. A negative correlation existed between nitrate use and ammonium use. Ammonium concentration was higher than that of nitrate in tree leaves and roots, and also in soils, which indicated climax woody species had a relative preference for ammonium nutrition. There was a positive relationship between tree nitrogen nutrition use and soil nitrogen nutrient supply. Utilization of ammonium and nitrate as well as the seasonal patterns differed significantly between the species. Peaks of ammonium, nitrate, NRA and total nitrogen in one species were therefore not necessarily synchronous with peaks in other species, and which indicated a species-specific seasonal use of nitrogen. The species-specific temporal differentiation in nitrogen use might reduce the competition between co-existing species and may be an important mechanism promoting stability of virgin mixed broad-leaved//Korean pine forest.展开更多
Based on a vast of field investigation on stamps in Tilia broad-leaved Korean pine forest on northem slope of Changbai Mountain, age structure of some major species were studied in this paper. The results showed that ...Based on a vast of field investigation on stamps in Tilia broad-leaved Korean pine forest on northem slope of Changbai Mountain, age structure of some major species were studied in this paper. The results showed that Korean pine population was composed of grouped patches with different ages. There were not strict intervals among the dominated generations,and the curve of age structure often had two or more peaks. The distribution of broad-leaved species in natural Korean pine forest was grouped or scattered, and age distribution was also uneven-aged. There existed close relation between quantity of broad-leaved species and Korean pine. So, it shaped multi-storied and uneven-aged mixed forest. The model of age structure and growth demonstrated their passive correlation, but growth became slow when woods had reached old age.展开更多
Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Cha...Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.展开更多
Recovery of species diversity after catastrophic disturbance was influenced by a few factors, such as intensity of disturbance, availability of propagules, and the environmental conditions, In this paper, we examined ...Recovery of species diversity after catastrophic disturbance was influenced by a few factors, such as intensity of disturbance, availability of propagules, and the environmental conditions, In this paper, we examined pattems of species development after nearly 60a succession in bumed broad-leaved Korean pine mixed forest on northem slope of ChangbaiMountain. We aasessed the recovery of plant species diversity in 3 types of forests under the contition with gradient of soil moisture. Results revealed that recovery of plant species (liversity varied greatly under different environmental conditions.Species richness of secondary forests greatly related to the site condition. Secondary birch forest on mesic site had the greatest number of plant species and the following was poplar-birch forest and larch-birch forest.Most of characteristic taxa couldbe found in birch forest after 60a succession. For larch-birch forest on hydra site, most of climax species were still not able to invade, so it had the lowest species diversity.展开更多
Studies were carried out on the spalial patterns of dominant species and gaps, and the influence of which on the regeneration in the broad-leaved Korean pine forest on the north slope of Mt. Changbai. The result showe...Studies were carried out on the spalial patterns of dominant species and gaps, and the influence of which on the regeneration in the broad-leaved Korean pine forest on the north slope of Mt. Changbai. The result showed that many deciduous tree species have high growth rates and become more competitive due to the more mild and humid climate at Mt.Changbai. No obvious aggregated distribution pattern was showed. In this forest small gaps are most frequent, with even distribution, which may be beneficial to survival and growth of Pinus koraiensis saplings.展开更多
The secondary succession of natural Korean pine(Pinus koraiensis ) forests in Fenglin Nature Reserv, located at northem section of south slope of Xiaoxing’an Mountains, Heilongjiang, wasinvestigated . The currat fore...The secondary succession of natural Korean pine(Pinus koraiensis ) forests in Fenglin Nature Reserv, located at northem section of south slope of Xiaoxing’an Mountains, Heilongjiang, wasinvestigated . The currat forest types are ropreseded by broadleaved mixed forests dominated bywhite birch (Betula platyphylla ) and broadleaved-coniferous mixed forest dominated by larch(Larix gmelini). The secondary forests developed after a fire in 1931. Studied results showed that conderousspecies and hardwod species could replace the pioneer species together and the secondary forestscould reach the climax community without passing the hard broadleaved Stage. As the pioneer speciesfor replacing Korean pine, the oak forest was faster, the following was white birch forest, and the lastwas lawh-white birch fotal. For replacing spruce, the white birch forest and larch-white birch foresthad best results and the following was poplar forest and oak forest. White birch forest and larch-whitebirch forest had best result in replacing fir forest.展开更多
According to the growth characteristics of natural Korean pine (Pinus Koraiensis) forests, 6 equations such as Chapman-Richards equation, Logistic equation, Power equation, and so on were selected to ftt for the growt...According to the growth characteristics of natural Korean pine (Pinus Koraiensis) forests, 6 equations such as Chapman-Richards equation, Logistic equation, Power equation, and so on were selected to ftt for the growth modeIs for Korean pine forest. The growth models were developed based on 208 random trees and 24o dominant trees. Results show that the Chapman-Richards equation is the best model for estimating tree height by age and DBH, while the Parabola equation is fittest for predicting DBH by age or estimating age from DBH. The site index table of Korean pine forest was compiled by using the proportional method with the Chapman-Richards equation as the guide curve and vaIidated by accuracy test.展开更多
This paper reviews the researches on old-growth korean pine (Pinus koraoensis) forest in Northeast China. The ecological characteristies of the forest were summarized. According to the researeh results, the importance...This paper reviews the researches on old-growth korean pine (Pinus koraoensis) forest in Northeast China. The ecological characteristies of the forest were summarized. According to the researeh results, the importance of studying and reserving on the old-growth forest was addressed, which were the indispensable research laboratory and classroom for forest managers. The conelusions indicate that the future of Korean pine forest management should be based on the research results of oldgrowth forests.展开更多
Shannon diversity index and its evenness are used to analyze the difference of higher plants in brod-leaved Korean pine forest and secondary birch forest. The result show that the species diversity of higher plants in...Shannon diversity index and its evenness are used to analyze the difference of higher plants in brod-leaved Korean pine forest and secondary birch forest. The result show that the species diversity of higher plants in secondary bireh forest is higher than that in broad-leaved Korean pine forest. Many of rare species existing in broad-leaved Korean pine forest are few or absent in secondary birch forest. The diversity of herbs both in broad-leaved Korean pine and in secondary birch forest is very rich and has a great change in different scesons.展开更多
It is well--known that broadlcaved/Korean pine forests distribute in the areanear the broad seas in the cast Asia.TheStudy history or the forests is coincided withthat of its exploitation and destroying.
The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated...The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated that the amounts of stemflow, throughfall, and interception were 37.39, 322.12 and 109.69 mm, accounting for 7.97%, 68.65% and 23.38% of the total rainfall, respectively. The rate of stemflow was higher in Jul. and Aug. than other months. The rate of throughfall dropped off from Jun. to Sept., however, rate of interception changed contrarily from 19.43% to 31.02% during the growing season. According to our analysis, the concentration of nutrient elements were arranged as Ca>Mg>N>K>Fe>P>Cu>Mn for rainfall, K>N>Mg>Ca>P>Fe>Mn>Cu for throughfall, and Mn>P>K>Cu>Fe>N>Mg>Ca for being leached through canopy. Nutrients concentration in stewflow and throughfall changed significantly when rainfall passed canopy, and concentration of all elements increased except for Ca and Mg.展开更多
A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of th...A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of the existing fallen trees and the annual input in the mixed broadleaved and Korean pine forest. The current storage of fallen trees was 16.25 t昲m-2 in the initially, but after 100 years, 85% of the storage in dry weight was decomposed, and little material was left after 300 years. The average annual input of fallen trees was 0.6 t昲m-2and it increased with time to 31.0 t昲m-2after 200 years, which was maintained until the climax community ended. The total storage of fallen trees increased in the early stage. The decomposition of fallen trees eventually reached equilibrium with storage being identical with the annual input of fallen trees.展开更多
This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river chan...This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river channel was investigated with base diameter, top diameter, length, and decay class. To study relationship between in-stream LWD and adjacent riparian forest, species of each log of LWD in segment 1 was identified, and the riparian forest was examined by setting a 32m?4 m quadrat consisting of twelve 8m?m small quadrats. The results showed that, in segment 1, in-stream LWD loading was 1.733 m3/100m or 10.83 m3hm-2, and in segment 2, it was 1.709m3/100m or 21.36 m3hm-2. In-stream LWD in decay class III and IV were accounted for a high proportion, which was different from that in the broadleaved and Korean pine forest, and the possible reason might be different decomposing velocities due to different decomposing conditions. Logs of LWD in stream and living trees in riparian forest declined as diameter increased, and it was in a reverse J-shaped distribution except logs of LWD in segment 1 in the first diameter class. Volumes of LWD in stream and living trees in riparian forest increased as diameter increased, and it was in a typical J-shaped distribution. Loading and species component of in-stream LWD were correlative to status of riparian forest to a certain extent, and there also existed difference. Comparing the correlation and difference was helpful to study on dynamic of the riparian forest.展开更多
This study aimed to demonstrate change in spatial correlation between Korean pine (Pinus koraiensis Sieb. et Zucc.) and three rare species, and change in spatial distribution of four species in response to a range o...This study aimed to demonstrate change in spatial correlation between Korean pine (Pinus koraiensis Sieb. et Zucc.) and three rare species, and change in spatial distribution of four species in response to a range of selective cutting intensities. We sampled three plots of mixed Korean pine and broad-leaf forest in Lushuihe Forestry Bureau of Jilin province, China. Plot 1, a control, was unlogged Korean pine broad-leaf forest. In plots 2 and 3, Korean pine was selectively cut at 15 and 30 % intensity, respectively, in the 1970s. Other species were rarely cut. We used point-pattern analysis to research the spatial distributions of four tree species and quantify spatial correlations between Korean pine and the other three species, Amur linden (Tilia amurensis Rupr.), Manchurian ash (Fraxinus mandshurica Rupr.), and Mongolian oak (Quercus mongolica Fisch.) in all three plots. The results of the study show that selective cutting at 15 % intensity did not significantly change either the species spatial patterns or the spatial correlation between Korean pine and broadleaf species. Selective cutting at 30 % intensity slightly affected the growth of Korean pine and valuable species in forest communities, and the effect was considered nondestructive and recoverable.展开更多
文摘A succession and silviculture model (ZELIG.CBA) for broad-leaved Korean pine forest of Changbai Moutain Area was developed based on the framework of ZELIG model and characteristics of Broad-leaved Korean pine forests of Changbai area. ZELIG.CBA model consists four sub-models: growth model simulating annual increment of individual tree in forest, regeneration model simulating annual establishment of different tree species, mortality model simulating annual agerelated and stress-related morality; and silviculture model simulating the forest response to different silviculture scenario. The validation of the ZELIG.CBA showed that the accuracy of the model for the forest growth was more than 95%. The succession from clear cutting site simulating showed that the ZELIG.CBA model was stable for long term simulation. And selective cutting experiment showed that the optimal scenario for broad-leaved Korean pine forests was removal volume 30% combining with 30a rotation.
文摘With the concem of regcneration, characteristics of canopy gaps in broad-leaved Korean pine forest were studied.The areas of actual gap, expanded gap and maximum gap were analyzed respectively. The species composition, number, origin,decayed class and sizes of gap makers were studied comprehensively. The comparative studies of regencration inside and outside of canopy gap showed that the density of regeneration inside canopy gaps was 30% higher than that outside canopy gaps. The specific species regeneration response to canopy gap varied greatly. Pinus koraiensis, Picea jezoensis Frarinlis nla)ldshurica, JItghI)ls )nalJholu-i`a and Acer mono generally did not response to canopy gap disturbance. The Regeneration Importantce Valuc (RIV) of Abies nephrolepis, Ulmus Japonica increased with canopy gap disturbance. RIV of Tilia amurensis, Acer madshurica and Ulmus laciniata decreased with canopy gap disturbance. Canopy gap disturbance was not strong enough to result in the regeneration of some rpecies of shade intolerance such as Larix olgensis, Betula platyphylla.
基金supported by the National Natural Science Foundation of China(42107476,41877426)the Hunan Provincial Natural Science Foundation of China(2021JJ41075)+3 种基金the China Postdoctoral Science Foundation(2020M682600)the Science and Technology Innovation Program of Hunan Province(2020RC2058)the Research Foundation of the Bureau of Education in Hunan Province(20B627)China Scholarship Council(CSC,no.202206600004,to DY).
文摘The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.
基金This research was supported by National Natural Science Foundation of China (Grant No. 40171092).
文摘The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static closed chamber technique in a typical broad-leaved/Korean pine mixed forest area on the northern slope of Changbai Mountain, Jilin Province, China. The experiment was carried out through the day and night in the growing season (from June to September) in situ and sample gas was analyzed by a gas chromatograph. Results showed that the forest floor was a large net source of carbon, and soil CO2 fluxes had an obvi-ous law of seasonal and diel variation. The soil CO2 flux of broad-leaved/Korean pine mixed forest was in the range of 0.302.42 mmol穖-2穝-1 with the mean value of 0.98 mmol穖-2穝-1. An examination on the seasonal pattern of soil CO2 emission suggested that the variability in soil CO2 flux could be correlated with variations in soil temperature, and the maximum of mean CO2 flux occurred in July ((1.27±23%) mmol穖-2穝-1) and the minimum was in September ((0.50±28%) mmol穖-2穝-1). The fluctuations in diel soil CO2 flux were also correlated with changes in soil temperature; however, there existed a factor for a time lag. Soil CO2 flux from the forest floor was strongly related to soil temperature and had the highest correlation with temperature at 6-cm depth of soil. Q10 values based on air temperature and soil temperature of different soil depths were at the ranges of 2.09–3.40.
基金This study was supported by the NKBRSF (G1999043407-1) Tackle Key Problem of Science and technology of China (2001BA510B-07) Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-406SCXZD0101)NKTRDP (2001BA510B
文摘A 112 m×8 m sample pot which includes 14 sub-plots was set up along the slope in Hongshi Forestry Farm of Baihe Forestry Bureau (127°55′E, 42°30′ N), Jilin Province in August 2002. Community structure, soil moisture contents at 0–10 cm and 10–20 cm in depth, water content of litter as well as the contents of C, N and P of litter, living leaves and branches in the broad-leaved/Korean pine (Pinus korraiensis) forest were measured in each sub-plot on different slope positions. The analytical results showed that there existed an obvious soil moisture gradient along the slope: upper slope <middle slope< lower slope. The difference in soil moisture contents on different positions of slope led to a change of the stand structure of the braod-leaved/Korean pine forest. The proportion ofQuercus mongolica gradually increased with the decrease of soil moisture content and that of other major tree species in the broad-leaved/Korean pine forest gradually decreased or disappeared. The dynamic of soil moisture contents in the litter layer was as same as that in mineral soils. The decomposition rates of the litter on different slope positions were different and the dry weights of existent litter varied significantly. The soil nutrients in the litter on the lower slope was richer than that on the upper slope due to the different stand structure on the different slope positions. The moisture content and nutrient contents of soil had effects on the composition, decomposition, and the nutrient release of litter, thus affecting stands growth and stand structure and finally leading to the change of ecosystem. Key words Soil moisture gradient - nutrient - Stand structure - Broad-leaved/Korean pine forest CLC number S718.5 Document code A Foundation item: This study was supported by the NKBRSF (G1999043407-1), Tackle Key Problem of Science and technology of China (2001BA510B-07), Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-406, SCXZD0101), NKTRDP (2001BA510B-07. 2002BA516A20).Biography: WANG Yan (1970-), female, Ph. D, associate professorResponsible editor: Song Funan
文摘Using the closed chamber technique, the in situ measurements of N2O and CH4 fluxes was conducted in a broad-leaved Korean pine mixed forest ecosystem in Changbai Mountain, China. from June 1994 to october 1995. The relationships between fluxes (N2O and CH4) and some major environmental factors (temperature, soil water content and soil availabIe nitrogen) were studied. A significant positive correlation between Nzo emission and air/soil temperature was observed, but no significant correIation was found between N2O emission and soil water content (SWC). This result showed that temperature was an important controlling factor of N2O flux. There was a significant correlation between CH4 uptake and SWC, but no significant correlation was found between CH4 uptake and temperature. This suggested SWC was an important factor controlling CH4 uptake. The very significant negative correlation between logarithmic N2O flux and soil nitrate concentration, significant negative correlation between CH4 flux and soil ammonium content were also found.
文摘Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and anin-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation among four coexisting dominant tree species, includingPinus koraiensis, Tilia amurensis, Fraxinus mandshurica andAcer mono, in a virgin mixed broad-leaved/Korean pine (Pinus koraiensis) forest. The soil study included individual horizons of L+F (0–5 cm), Ah (5–11 cm) and Aw (11–25 cm). All four species had nitrate and ammonium in their roots and leaves, and also NRA in leaves. This indicated that these coexisting species were adapted to ammonium + nitrate nutrition. A negative correlation existed between nitrate use and ammonium use. Ammonium concentration was higher than that of nitrate in tree leaves and roots, and also in soils, which indicated climax woody species had a relative preference for ammonium nutrition. There was a positive relationship between tree nitrogen nutrition use and soil nitrogen nutrient supply. Utilization of ammonium and nitrate as well as the seasonal patterns differed significantly between the species. Peaks of ammonium, nitrate, NRA and total nitrogen in one species were therefore not necessarily synchronous with peaks in other species, and which indicated a species-specific seasonal use of nitrogen. The species-specific temporal differentiation in nitrogen use might reduce the competition between co-existing species and may be an important mechanism promoting stability of virgin mixed broad-leaved//Korean pine forest.
文摘Based on a vast of field investigation on stamps in Tilia broad-leaved Korean pine forest on northem slope of Changbai Mountain, age structure of some major species were studied in this paper. The results showed that Korean pine population was composed of grouped patches with different ages. There were not strict intervals among the dominated generations,and the curve of age structure often had two or more peaks. The distribution of broad-leaved species in natural Korean pine forest was grouped or scattered, and age distribution was also uneven-aged. There existed close relation between quantity of broad-leaved species and Korean pine. So, it shaped multi-storied and uneven-aged mixed forest. The model of age structure and growth demonstrated their passive correlation, but growth became slow when woods had reached old age.
文摘Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.
文摘Recovery of species diversity after catastrophic disturbance was influenced by a few factors, such as intensity of disturbance, availability of propagules, and the environmental conditions, In this paper, we examined pattems of species development after nearly 60a succession in bumed broad-leaved Korean pine mixed forest on northem slope of ChangbaiMountain. We aasessed the recovery of plant species diversity in 3 types of forests under the contition with gradient of soil moisture. Results revealed that recovery of plant species (liversity varied greatly under different environmental conditions.Species richness of secondary forests greatly related to the site condition. Secondary birch forest on mesic site had the greatest number of plant species and the following was poplar-birch forest and larch-birch forest.Most of characteristic taxa couldbe found in birch forest after 60a succession. For larch-birch forest on hydra site, most of climax species were still not able to invade, so it had the lowest species diversity.
文摘Studies were carried out on the spalial patterns of dominant species and gaps, and the influence of which on the regeneration in the broad-leaved Korean pine forest on the north slope of Mt. Changbai. The result showed that many deciduous tree species have high growth rates and become more competitive due to the more mild and humid climate at Mt.Changbai. No obvious aggregated distribution pattern was showed. In this forest small gaps are most frequent, with even distribution, which may be beneficial to survival and growth of Pinus koraiensis saplings.
文摘The secondary succession of natural Korean pine(Pinus koraiensis ) forests in Fenglin Nature Reserv, located at northem section of south slope of Xiaoxing’an Mountains, Heilongjiang, wasinvestigated . The currat forest types are ropreseded by broadleaved mixed forests dominated bywhite birch (Betula platyphylla ) and broadleaved-coniferous mixed forest dominated by larch(Larix gmelini). The secondary forests developed after a fire in 1931. Studied results showed that conderousspecies and hardwod species could replace the pioneer species together and the secondary forestscould reach the climax community without passing the hard broadleaved Stage. As the pioneer speciesfor replacing Korean pine, the oak forest was faster, the following was white birch forest, and the lastwas lawh-white birch fotal. For replacing spruce, the white birch forest and larch-white birch foresthad best results and the following was poplar forest and oak forest. White birch forest and larch-whitebirch forest had best result in replacing fir forest.
文摘According to the growth characteristics of natural Korean pine (Pinus Koraiensis) forests, 6 equations such as Chapman-Richards equation, Logistic equation, Power equation, and so on were selected to ftt for the growth modeIs for Korean pine forest. The growth models were developed based on 208 random trees and 24o dominant trees. Results show that the Chapman-Richards equation is the best model for estimating tree height by age and DBH, while the Parabola equation is fittest for predicting DBH by age or estimating age from DBH. The site index table of Korean pine forest was compiled by using the proportional method with the Chapman-Richards equation as the guide curve and vaIidated by accuracy test.
文摘This paper reviews the researches on old-growth korean pine (Pinus koraoensis) forest in Northeast China. The ecological characteristies of the forest were summarized. According to the researeh results, the importance of studying and reserving on the old-growth forest was addressed, which were the indispensable research laboratory and classroom for forest managers. The conelusions indicate that the future of Korean pine forest management should be based on the research results of oldgrowth forests.
文摘Shannon diversity index and its evenness are used to analyze the difference of higher plants in brod-leaved Korean pine forest and secondary birch forest. The result show that the species diversity of higher plants in secondary bireh forest is higher than that in broad-leaved Korean pine forest. Many of rare species existing in broad-leaved Korean pine forest are few or absent in secondary birch forest. The diversity of herbs both in broad-leaved Korean pine and in secondary birch forest is very rich and has a great change in different scesons.
文摘It is well--known that broadlcaved/Korean pine forests distribute in the areanear the broad seas in the cast Asia.TheStudy history or the forests is coincided withthat of its exploitation and destroying.
基金This paper was supported by Chinese Academy of Science (KZCX2-406) Institute of Applied Ecology (SCXZD0101)+1 种基金 Chinese Academy of Science Shenyang and the Open Research Station of Changbai Mountain Forest Ecosystem.
文摘The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated that the amounts of stemflow, throughfall, and interception were 37.39, 322.12 and 109.69 mm, accounting for 7.97%, 68.65% and 23.38% of the total rainfall, respectively. The rate of stemflow was higher in Jul. and Aug. than other months. The rate of throughfall dropped off from Jun. to Sept., however, rate of interception changed contrarily from 19.43% to 31.02% during the growing season. According to our analysis, the concentration of nutrient elements were arranged as Ca>Mg>N>K>Fe>P>Cu>Mn for rainfall, K>N>Mg>Ca>P>Fe>Mn>Cu for throughfall, and Mn>P>K>Cu>Fe>N>Mg>Ca for being leached through canopy. Nutrients concentration in stewflow and throughfall changed significantly when rainfall passed canopy, and concentration of all elements increased except for Ca and Mg.
基金Supported by NKBRSF (Grant No. G1999043407) the Institute of Applied Ecology (grant No. SCXZD0101)+2 种基金 CAS the National Natural Science Foundation of China (NSFC39970123) and by the Changbai Mountain Open Research Station.
文摘A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of the existing fallen trees and the annual input in the mixed broadleaved and Korean pine forest. The current storage of fallen trees was 16.25 t昲m-2 in the initially, but after 100 years, 85% of the storage in dry weight was decomposed, and little material was left after 300 years. The average annual input of fallen trees was 0.6 t昲m-2and it increased with time to 31.0 t昲m-2after 200 years, which was maintained until the climax community ended. The total storage of fallen trees increased in the early stage. The decomposition of fallen trees eventually reached equilibrium with storage being identical with the annual input of fallen trees.
基金This paper was supported by the Chinese Academy of Sciences (KZCX2-406) and National Natural Science Foundation of China (NSFC39970123) and Changbai Mountain Open Research Station.
文摘This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river channel was investigated with base diameter, top diameter, length, and decay class. To study relationship between in-stream LWD and adjacent riparian forest, species of each log of LWD in segment 1 was identified, and the riparian forest was examined by setting a 32m?4 m quadrat consisting of twelve 8m?m small quadrats. The results showed that, in segment 1, in-stream LWD loading was 1.733 m3/100m or 10.83 m3hm-2, and in segment 2, it was 1.709m3/100m or 21.36 m3hm-2. In-stream LWD in decay class III and IV were accounted for a high proportion, which was different from that in the broadleaved and Korean pine forest, and the possible reason might be different decomposing velocities due to different decomposing conditions. Logs of LWD in stream and living trees in riparian forest declined as diameter increased, and it was in a reverse J-shaped distribution except logs of LWD in segment 1 in the first diameter class. Volumes of LWD in stream and living trees in riparian forest increased as diameter increased, and it was in a typical J-shaped distribution. Loading and species component of in-stream LWD were correlative to status of riparian forest to a certain extent, and there also existed difference. Comparing the correlation and difference was helpful to study on dynamic of the riparian forest.
基金funded by China National Science and Technology Support Program(Grant No.2012BAD21B02)
文摘This study aimed to demonstrate change in spatial correlation between Korean pine (Pinus koraiensis Sieb. et Zucc.) and three rare species, and change in spatial distribution of four species in response to a range of selective cutting intensities. We sampled three plots of mixed Korean pine and broad-leaf forest in Lushuihe Forestry Bureau of Jilin province, China. Plot 1, a control, was unlogged Korean pine broad-leaf forest. In plots 2 and 3, Korean pine was selectively cut at 15 and 30 % intensity, respectively, in the 1970s. Other species were rarely cut. We used point-pattern analysis to research the spatial distributions of four tree species and quantify spatial correlations between Korean pine and the other three species, Amur linden (Tilia amurensis Rupr.), Manchurian ash (Fraxinus mandshurica Rupr.), and Mongolian oak (Quercus mongolica Fisch.) in all three plots. The results of the study show that selective cutting at 15 % intensity did not significantly change either the species spatial patterns or the spatial correlation between Korean pine and broadleaf species. Selective cutting at 30 % intensity slightly affected the growth of Korean pine and valuable species in forest communities, and the effect was considered nondestructive and recoverable.