We present the results of laser ablations cleanness process on bronzes covered by a chloride patina in two different media: marine water and air. The bronze chloride disease was obtained treating commercial bronzes w...We present the results of laser ablations cleanness process on bronzes covered by a chloride patina in two different media: marine water and air. The bronze chloride disease was obtained treating commercial bronzes with HCI 37%, for 190 h. X-ray photoelectron spectroscopy and optical images taken on treated samples show the formation of a CuCIJCu2CI2 patina of about 300 m Laser ablation reduces in both medium the patina thickness at few microns without changing the chemical composition of bronze. X-ray analysis show the most effectiveness of ablation procedure in marine water where its only effect is the patina reduction without introducing changes in bronze chemical composition. Ablation in air, instead, reduces the patina but favors the adsorption of air oxygen and carbon on sample surfaces and a progressive "carbonization" of samples.展开更多
文摘We present the results of laser ablations cleanness process on bronzes covered by a chloride patina in two different media: marine water and air. The bronze chloride disease was obtained treating commercial bronzes with HCI 37%, for 190 h. X-ray photoelectron spectroscopy and optical images taken on treated samples show the formation of a CuCIJCu2CI2 patina of about 300 m Laser ablation reduces in both medium the patina thickness at few microns without changing the chemical composition of bronze. X-ray analysis show the most effectiveness of ablation procedure in marine water where its only effect is the patina reduction without introducing changes in bronze chemical composition. Ablation in air, instead, reduces the patina but favors the adsorption of air oxygen and carbon on sample surfaces and a progressive "carbonization" of samples.