The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques ...The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.展开更多
To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer developme...To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.展开更多
This paper discusses the analysis and design of a very thin slotless permanent magnet (PM) brushless motor whose stator laminations are manufactured from a single strip of steel that is edge wound into a spiral (li...This paper discusses the analysis and design of a very thin slotless permanent magnet (PM) brushless motor whose stator laminations are manufactured from a single strip of steel that is edge wound into a spiral (like a "Slinky") and then fitted over the windings that are preformed on the outside surface of a non-conducting former. Analytical and finite element analysis (FEA) are used to determine the con- strained optimum dimensions of a motor used to drive a rim driven thruster in which the motor rotor is fit- ted onto the rim of the propeller and the stator is encapsulated in the thin Kort nozzle of the thruster. The paper describes the fabrication of a demonstrator motor and presents experimental results to validate the theoretical calculations. Experimental motor performance results are also reported and compared with those of a slotted motor that fits within the same active radial dimensions as the slotless motor. The slotless motor, which has longer active length and endwindings, and thicker magnets than the slotted motor, was found to be less efficient and more expensive (prototype cost) than the slotted machine.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Base...In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.展开更多
A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yie...A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.展开更多
Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is dif...Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.展开更多
This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">&l...This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This is mainly a comparative study between a PID regulator and a fuzzy regulator applied to the operation of this type of engine in order to find the best control. The BLDC engine must operate under various speed and load conditions with improved performance and robust and complex speed control. Because of this complexity, the traditional PID command encounters difficulties in controlling the speed of a BLDC. Another control technique is currently developing and is producing good results. This is the fuzzy controller that handles process control problems, that is, managing a process based on a given set point per action on the variables that describe the process. To achieve the desired results, the brushless DC machine model will be studied. With the model obtained, both types of regulator will be tested. A synthesis of the observed comparison results will enable a conclusion to be drawn on the performance of the two types of regulators driving a BLDC (Brushless DC)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.展开更多
An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutat...An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutation strategy during acceleration and deceleration.This article also builds a complete brushless DC motor drive system based on the GD32F103 micro control unit(MCU),with an Artix-7 XC7A35T field programmable gate array(FPGA)to meet the performance requirements of neural network calculation for real-time motor commutation control.Experimental results show that the proposed optimization strategy can effectively improve the system stability during system acceleration and deceleration,and reduce the current spikes generated during speed chan-ges.The system power consumption is reduced by about 11.7%on average.展开更多
Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric tra...Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.展开更多
The high temperature (175 ℃) operation of a motor spells out special requirements for control algorithms, materials and elements. The stability of motor characteristic is guaranteed by the digital control strategy. C...The high temperature (175 ℃) operation of a motor spells out special requirements for control algorithms, materials and elements. The stability of motor characteristic is guaranteed by the digital control strategy. Constant velocity operation is achieved by phase locked loop (PLL), and constant power operation is achieved by a current restricting circuit. A motor for constant speed and constant power operation has been built and the speed control system is tuned by MATLAB simulation. Experimental and simulation results for operation mode control of brushless DC motor are presented.展开更多
This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model a...This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived. This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions. Simulated responses are presented to highlight the effectiveness of the proposed control strategy.展开更多
Presents the simulation and analysis of the steady state characteristic of a brushless DC motor studies the torque current characteristic of the motor as well and discusses the design of a current measure circuit for ...Presents the simulation and analysis of the steady state characteristic of a brushless DC motor studies the torque current characteristic of the motor as well and discusses the design of a current measure circuit for torque controlling.展开更多
A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was anal...A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.展开更多
Torque tripple has significant effect on performance of permanent magnet brushless DC motor. This paper presents a mathematical model built for such a motor, the analysis of torque tripple for a brushless DC motor wit...Torque tripple has significant effect on performance of permanent magnet brushless DC motor. This paper presents a mathematical model built for such a motor, the analysis of torque tripple for a brushless DC motor with sinusoidal flux distribution, which is verified by torque tripple experiments run with a test motor, and equations developed for torque tripple resulting from different sator current errors.展开更多
As permanent magnet motors and generators produce torque, vibration occurs through the small air gap due to the alternating magnetic forces created by the rotating permanent magnets and the current switching of the co...As permanent magnet motors and generators produce torque, vibration occurs through the small air gap due to the alternating magnetic forces created by the rotating permanent magnets and the current switching of the coils. The magnetic force can be calculated from the flux density by finite element methods and the Maxwell stress tensor in cy-lindrical coordinates. In this paper the magnetic flux density, the magnetic force and the torque of a real three dimen-sional brushless DC motor are simulated using Maxwell 3 D V 11.1.展开更多
A power system structure composed of a brushless DC motor and a cycloidal reducer for electric balanced vehicle has been proposed, and the temperature of important components in this structure would be discussed. The ...A power system structure composed of a brushless DC motor and a cycloidal reducer for electric balanced vehicle has been proposed, and the temperature of important components in this structure would be discussed. The loss generated by the cycloid reducer is negligible, it’s only need to analyze the thermal field of motor. Since the temperature change will affect the material properties of the target motor, the electromagnetic and temperature fields, involved in the motor, are selected for coupling calculation to determine whether the final temperature distribution can meet the requirements of vehicle for use.展开更多
The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structur...The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.展开更多
文摘The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.
基金Project(51805368) supported by the National Natural Science Foundation of ChinaProject(2018QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(DMETKF2021017) supported by Open Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,China。
文摘To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.
文摘This paper discusses the analysis and design of a very thin slotless permanent magnet (PM) brushless motor whose stator laminations are manufactured from a single strip of steel that is edge wound into a spiral (like a "Slinky") and then fitted over the windings that are preformed on the outside surface of a non-conducting former. Analytical and finite element analysis (FEA) are used to determine the con- strained optimum dimensions of a motor used to drive a rim driven thruster in which the motor rotor is fit- ted onto the rim of the propeller and the stator is encapsulated in the thin Kort nozzle of the thruster. The paper describes the fabrication of a demonstrator motor and presents experimental results to validate the theoretical calculations. Experimental motor performance results are also reported and compared with those of a slotted motor that fits within the same active radial dimensions as the slotless motor. The slotless motor, which has longer active length and endwindings, and thicker magnets than the slotted motor, was found to be less efficient and more expensive (prototype cost) than the slotted machine.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
文摘In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.
文摘A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.
文摘Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.
文摘This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This is mainly a comparative study between a PID regulator and a fuzzy regulator applied to the operation of this type of engine in order to find the best control. The BLDC engine must operate under various speed and load conditions with improved performance and robust and complex speed control. Because of this complexity, the traditional PID command encounters difficulties in controlling the speed of a BLDC. Another control technique is currently developing and is producing good results. This is the fuzzy controller that handles process control problems, that is, managing a process based on a given set point per action on the variables that describe the process. To achieve the desired results, the brushless DC machine model will be studied. With the model obtained, both types of regulator will be tested. A synthesis of the observed comparison results will enable a conclusion to be drawn on the performance of the two types of regulators driving a BLDC (Brushless DC)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.
基金the National Key Research and Development Program(No.2017YFB0406204,2016YFC0105604)Beijing Science and Technology Projects(No.Z181100003818002)Science and Technology Service Network Initiative(No.FJ-STS-QYZX-099,KFJ-STS-ZDTP-069).
文摘An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutation strategy during acceleration and deceleration.This article also builds a complete brushless DC motor drive system based on the GD32F103 micro control unit(MCU),with an Artix-7 XC7A35T field programmable gate array(FPGA)to meet the performance requirements of neural network calculation for real-time motor commutation control.Experimental results show that the proposed optimization strategy can effectively improve the system stability during system acceleration and deceleration,and reduce the current spikes generated during speed chan-ges.The system power consumption is reduced by about 11.7%on average.
文摘Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.
文摘The high temperature (175 ℃) operation of a motor spells out special requirements for control algorithms, materials and elements. The stability of motor characteristic is guaranteed by the digital control strategy. Constant velocity operation is achieved by phase locked loop (PLL), and constant power operation is achieved by a current restricting circuit. A motor for constant speed and constant power operation has been built and the speed control system is tuned by MATLAB simulation. Experimental and simulation results for operation mode control of brushless DC motor are presented.
文摘This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived. This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions. Simulated responses are presented to highlight the effectiveness of the proposed control strategy.
文摘Presents the simulation and analysis of the steady state characteristic of a brushless DC motor studies the torque current characteristic of the motor as well and discusses the design of a current measure circuit for torque controlling.
基金Sponsored by the NSFC General Project (51177135)the Key Project of Natural Science Foundation of Shaanxi Province (2011GZ013)
文摘A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.
文摘Torque tripple has significant effect on performance of permanent magnet brushless DC motor. This paper presents a mathematical model built for such a motor, the analysis of torque tripple for a brushless DC motor with sinusoidal flux distribution, which is verified by torque tripple experiments run with a test motor, and equations developed for torque tripple resulting from different sator current errors.
文摘As permanent magnet motors and generators produce torque, vibration occurs through the small air gap due to the alternating magnetic forces created by the rotating permanent magnets and the current switching of the coils. The magnetic force can be calculated from the flux density by finite element methods and the Maxwell stress tensor in cy-lindrical coordinates. In this paper the magnetic flux density, the magnetic force and the torque of a real three dimen-sional brushless DC motor are simulated using Maxwell 3 D V 11.1.
文摘A power system structure composed of a brushless DC motor and a cycloidal reducer for electric balanced vehicle has been proposed, and the temperature of important components in this structure would be discussed. The loss generated by the cycloid reducer is negligible, it’s only need to analyze the thermal field of motor. Since the temperature change will affect the material properties of the target motor, the electromagnetic and temperature fields, involved in the motor, are selected for coupling calculation to determine whether the final temperature distribution can meet the requirements of vehicle for use.
文摘The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.