模糊线性时序逻辑(fuzzy linear temporal logic)被应用于刻画模糊系统的规范语言,其可实现性(realizability)用于判断满足该时序逻辑公式的开放系统模型是否存在.模糊线性时序逻辑可实现性和系统合成(synthesis)的基本思想是:给定模糊...模糊线性时序逻辑(fuzzy linear temporal logic)被应用于刻画模糊系统的规范语言,其可实现性(realizability)用于判断满足该时序逻辑公式的开放系统模型是否存在.模糊线性时序逻辑可实现性和系统合成(synthesis)的基本思想是:给定模糊线性时序逻辑公式,判断是否存在满足该公式的系统.如果存在,则构造满足该公式的最优系统.为了检验模糊线性时序逻辑的可实现性,首先引入模糊Büchi博弈的定义,作为检验模糊线性时序逻辑公式是否可实现的模型.其次通过归约的方法,研究模糊Büchi博弈的性质(最优无记忆策略存在性.最后验证模糊线性时序逻辑的可实现性并且给出其系统合成的过程,并说明它们的时间复杂度.展开更多
In explicit-state model checking, system proper- ties are typically expressed in linear temporal logic (LTL), and translated into a BUchi automaton (BA) to be checked. In order to improve performance of the conver...In explicit-state model checking, system proper- ties are typically expressed in linear temporal logic (LTL), and translated into a BUchi automaton (BA) to be checked. In order to improve performance of the conversion algo- rithm, some model checkers involve the intermediate au- tomata, such as a generalized Btichi automaton (GBA). The de-generalization is a translation from a GBA to a BA. In this paper, we present a conversion algorithm to translate an LTL formula to a BA directly. A labeling, acceptance degree, is presented to record acceptance conditions sat- isfied in each state and transition. Acceptance degree is a set of U-subformulae or F-subformulae of the given LTL formula. According to the acceptance degree, on-the-fly de- generalization algorithm, which is different from the standard de-generalization algorithm, is conceived and implemented. On-the-fly de-generalization algorithm is carried out during the expansion of the given LTL formula. It is performed in the case of the given LTL formula contains U-subformulae and F-subformulae, that is, the on-the-fly de-generalization algorithm is performed as required. In order to get a more deterministic BA, the shannon expansion is used recursively during expanding LTL formulae. Ordered binary decision diagrams are used to represent the BA and simplify LTL formulae. We compare the conversion algorithm presented in this paper to previous works, and show that it is more efficient for five families LTL formulae in common use and four setsof random formulae generated by LBTT (an LTL-to-BUchi translator testbench).展开更多
文摘模糊线性时序逻辑(fuzzy linear temporal logic)被应用于刻画模糊系统的规范语言,其可实现性(realizability)用于判断满足该时序逻辑公式的开放系统模型是否存在.模糊线性时序逻辑可实现性和系统合成(synthesis)的基本思想是:给定模糊线性时序逻辑公式,判断是否存在满足该公式的系统.如果存在,则构造满足该公式的最优系统.为了检验模糊线性时序逻辑的可实现性,首先引入模糊Büchi博弈的定义,作为检验模糊线性时序逻辑公式是否可实现的模型.其次通过归约的方法,研究模糊Büchi博弈的性质(最优无记忆策略存在性.最后验证模糊线性时序逻辑的可实现性并且给出其系统合成的过程,并说明它们的时间复杂度.
文摘In explicit-state model checking, system proper- ties are typically expressed in linear temporal logic (LTL), and translated into a BUchi automaton (BA) to be checked. In order to improve performance of the conversion algo- rithm, some model checkers involve the intermediate au- tomata, such as a generalized Btichi automaton (GBA). The de-generalization is a translation from a GBA to a BA. In this paper, we present a conversion algorithm to translate an LTL formula to a BA directly. A labeling, acceptance degree, is presented to record acceptance conditions sat- isfied in each state and transition. Acceptance degree is a set of U-subformulae or F-subformulae of the given LTL formula. According to the acceptance degree, on-the-fly de- generalization algorithm, which is different from the standard de-generalization algorithm, is conceived and implemented. On-the-fly de-generalization algorithm is carried out during the expansion of the given LTL formula. It is performed in the case of the given LTL formula contains U-subformulae and F-subformulae, that is, the on-the-fly de-generalization algorithm is performed as required. In order to get a more deterministic BA, the shannon expansion is used recursively during expanding LTL formulae. Ordered binary decision diagrams are used to represent the BA and simplify LTL formulae. We compare the conversion algorithm presented in this paper to previous works, and show that it is more efficient for five families LTL formulae in common use and four setsof random formulae generated by LBTT (an LTL-to-BUchi translator testbench).