期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
THE GLOBAL SOLUTION AND BLOWUP OF A SPATIOTEMPORAL EIT PROBLEM WITH A DYNAMICAL BOUNDARY CONDITION
1
作者 谢明洪 谭忠 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1881-1914,共34页
We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the fini... We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value.The second ingredient is the L^(q)(2 ≤q <∞) estimate of the global solution applying the Moser iteration,which allows us to show that any global solution is a classical solution.The third,which is the main ingredient of this paper,explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle. 展开更多
关键词 spatiotemporal EIT problem fractional Dirichlet-to-Neumann operator critical exponent bubbling phenomena
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部