We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the fini...We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value.The second ingredient is the L^(q)(2 ≤q <∞) estimate of the global solution applying the Moser iteration,which allows us to show that any global solution is a classical solution.The third,which is the main ingredient of this paper,explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle.展开更多
基金the NNSF of China(12071391)the Guangdong Basic and Applied Basic Research Foundation (2022A1515010069)。
文摘We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value.The second ingredient is the L^(q)(2 ≤q <∞) estimate of the global solution applying the Moser iteration,which allows us to show that any global solution is a classical solution.The third,which is the main ingredient of this paper,explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle.