期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
THE APPROXIMATE ANALYTICAL SOLUTION FOR THE BUCKLING LOADS OF A THIN-WALLED BOX COLUMN WITH VARIABLE CROSS-SECTION
1
作者 谢用九 宁钦海 陈明伦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期445-456,共12页
For a thin-walled box column with variable cross-section, the three governing equations for torsional-flexural buckling are ordinary differential equations of the second or fourth order with variable coefficients, so ... For a thin-walled box column with variable cross-section, the three governing equations for torsional-flexural buckling are ordinary differential equations of the second or fourth order with variable coefficients, so it is very difficult to solve them by means of an analytic method. In this paper, polynomials are used to approximate the geometric properties of cross-section and certain coefficients of the differential equations. Based on the energy principle and the Galerkin's method, the approximate formulas for calculating the flexural and torsional buckling loads of this kind of columns are developed respectively, and numerical examples are used to verify the correctness of the solutions obtained. The results calculated in this paper provide the basis for demonstrating the stability of thin-walled box columns with variable cross-section. This paper is of practical value. 展开更多
关键词 thin-walled box column with variable cross-section torsional-flexural buckling approximate solutions for buckling loads
全文增补中
Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation 被引量:3
2
作者 A.H.Sofiyev N.Kuruoglu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期205-218,共14页
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found... The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs. 展开更多
关键词 NANOCOMPOSITES CNTS Composite conical shells Two-parameter elastic foundations Combined buckling loads Shear deformation shell theories
下载PDF
DYNAMIC BUCKLING OF DOUBLE-WALLED CARBON NANOTUBES UNDER STEP AXIAL LOAD 被引量:2
3
作者 Chengqi Sun Kaixin Liu 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第1期27-36,共10页
An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes... An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes into account the van der Waals interaction between the outer and inner nanotubes. A buckling condition is derived, from which the critical buckling load and associated buckling mode can be determined. As examples, numerical results are worked out for DWNTs under fixed boundary conditions. It is shown that, due to the effect of van der Waals forces, the critical buckling load of a DWNT is enhanced when inserting an inner tube into a single-walled one. The paper indicates that the critical buckling load of DWNTs for dynamic buckling is higher than that for static buckling. The effect of the radii is also examined. In addition, some of the results are compared with the previous ones. 展开更多
关键词 carbon nanotube dynamic buckling buckling load buckling mode
下载PDF
Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness 被引量:1
4
作者 S.AFSHIN M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期785-804,共20页
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The... This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties. 展开更多
关键词 polymer hybrid composite(PHC) Halpin-Tsai carbon nanotube(CNT) nanoclay(NC) free vibration buckling load
下载PDF
STACKING SEQUENCE OPTIMIZA-TION OF LAMINATED COMPOSITE CYLINDER SHELL FOR MAXIMAL BUCKLING LOAD 被引量:4
5
作者 TANG Qian LIAO Xiaoyun GAO Zhan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期31-34,共4页
A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling l... A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan. 展开更多
关键词 Composite Laminated cylindrical shell Stacking sequence optimization buckling load Sampling algorithms
下载PDF
Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity
6
作者 Chi XU Yang LI +1 位作者 Mingyue LU Zhendong DAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第3期355-370,共16页
In this work,the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction.By utilizin... In this work,the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction.By utilizing the variational principle of virtual work,the governing equations and the associated standard boundary conditions are systematically extracted,and the thermal effect,equivalent to the induced thermal load,is explicitly assessed by using the nonlocal heat conduction law.The stressdriven constitutive integral equation is equivalently transformed into a differential form with two non-standard constitutive boundary conditions.By employing the eigenvalue method,the critical buckling loads of the beams with different boundary conditions are obtained.The numerically predicted results reveal that the growth of the nonlocal parameter leads to a consistently strengthening effect on the dimensionless critical buckling loads for all boundary cases.Additionally,the effects of the influential factors pertinent to the nonlocal heat conduction on the buckling behavior are carefully examined. 展开更多
关键词 size effect stress-driven nonlocal model constitutive boundary condition nonlocal heat conduction functionally graded(FG)beam buckling load
下载PDF
Effects of layer number and initial pressure on continuum-based buckling analysis of multi-walled carbon nanotubes accounting for van der Waals interaction
7
作者 Xinlei LI Jianfei WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1857-1872,共16页
The structural instability of multi-walled carbon nanotubes(MWCNTs) has captured extensive attention due to the unique characteristic of extremely thin hollow cylinder structure. The previous studies usually focus on ... The structural instability of multi-walled carbon nanotubes(MWCNTs) has captured extensive attention due to the unique characteristic of extremely thin hollow cylinder structure. The previous studies usually focus on the buckling behavior without considering the effects of the wall number and initial pressure. In this paper, the axial buckling behavior of MWCNTs with the length-to-outermost radius ratio less than 20 is investigated within the framework of the Donnell shell theory. The governing equations for the infinitesimal buckling of MWCNTs are established, accounting for the van der Waals(vd W) interaction between layers. The effects of the wall number, initial pressure prior to buckling, and aspect ratio on the critical buckling mode, buckling load, and buckling strain are discussed, respectively. Specially, the four-walled and twenty-walled CNTs are studied in detail, indicating the fact that the buckling instability may occur in other layers besides the outermost layer. The obtained results extend the buckling analysis of the continuum-based model, and provide theoretical support for the application of CNTs. 展开更多
关键词 multi-walled carbon nanotubes(MWCNTs) buckling load cylindrical shell model instability region buckling mode
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
8
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler Rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
复合材料层合板屈曲载荷计算的区间分析算法(英文) 被引量:4
9
作者 邱志平 李飞 杨嘉陵 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第3期218-222,共5页
A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method i... A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method is used to deal with uncertainties. Not necessarily knowing the probabilistic statistics characteristics of the uncertain variables, only little information on physical properties of material is needed in the interval analysis method, that is, the upper bound and lower bound of the uncertain variable. So the interval of response of the structure can be gotten through less computational efforts. The interval analysis method is efficient under the condition that probability approach cannot work well because of small samples and deficient statistics characteristics. For buckling load of a special cross-ply laminates and antisymmetric angle-ply laminates with all edges simply supported, calculations and comparisons between interval analysis method and probability method are performed. 展开更多
关键词 LAMINATE buckling load uncertain parameter interval analysis probabilistic statistics method
下载PDF
考虑管状构件屈曲恰当建模的海洋导管架结构完整性评估——以Resalat导管架为例 被引量:1
10
作者 Mohammad Hadi Erfani 《Journal of Marine Science and Application》 CSCD 2022年第4期145-167,共23页
In the present research,results of buckling analysis of 384 finite element models,verified using three different test results obtained from three separate experimental investigations,were used to study the effects of ... In the present research,results of buckling analysis of 384 finite element models,verified using three different test results obtained from three separate experimental investigations,were used to study the effects of five parameters such as D/t,L/D,imperfection,mesh size and mesh size ratio.Moreover,proposed equations by offshore structural standards concerning global and local buckling capacity of tubular members including former API RP 2A WSD and recent API RP 2A LRFD,ISO 19902,and NORSOK N-004 have been compared to FE and experimental results.One of the most crucial parts in the estimation of the capacity curve of offshore jacket structures is the correct modeling of compressive members to properly investigate the interaction of global and local buckling which leads to the correct estimation of performance levels and ductility.Achievement of the proper compressive behavior of tubular members validated by experimental data is the main purpose of this paper.Modeling of compressive braces of offshore jacket platforms by 3D shell or solid elements can consider buckling modes and deformations due to local buckling.ABAQUS FE software is selected for FE modeling.The scope of action of each of elastic buckling,plastic buckling,and compressive yielding for various L/r ratios is described.Furthermore,the most affected part of each parameter on the buckling capacity curve is specified.The pushover results of the Resalat Jacket with proper versus improper modeling of compressive members have been compared as a case study.According to the results,applying improper mesh size for compressive members can under-predict the ductility by 33%and under-estimate the lateral loading capacity by up to 8%.Regarding elastic stiffness and post-buckling strength,the mesh size ratio is introduced as the most effective parameter.Besides,imperfection is significantly the most important parameter in terms of critical buckling load. 展开更多
关键词 Critical buckling load Compressive behavior Post-buckling strength Local buckling Tubular members Jacket type offshore platforms
下载PDF
Shear deformable finite beam elements for composite box beams 被引量:2
11
作者 Nam-Il Kim Dong-Ho Choi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期223-240,共18页
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated compo... The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated. 展开更多
关键词 Thin-walled Composite box beam Deflection Twisting angle buckling load Shear deformation
下载PDF
Stability Analysis of a Multi-holes Shell Under Axial Compression
12
作者 ZHENG Xiao-ya WANG Meng 《International Journal of Plant Engineering and Management》 2009年第2期113-117,共5页
The paper presents a multi-holes shell with one hundred and eighty circular holes which has been used in engineering. Using a buckling module of the finite element analysis software, stability behavior and destroy mod... The paper presents a multi-holes shell with one hundred and eighty circular holes which has been used in engineering. Using a buckling module of the finite element analysis software, stability behavior and destroy mode along geometry parameters are studied. Results show the destroy mode depends on the geometry parameter greatly. Curves of buckling critical load and strength limited load along geometry parameters have a point of intersection. The point implies the multi-holes shell has different destroy mode and the value of point is change in geometry parameters. 展开更多
关键词 multi-holes buckling critical load destroy mode strength limited load
下载PDF
Buckling analysis of planar linear uniform deployable structures consisting of scissor-like element in space under compression 被引量:1
13
作者 LI Bo WANG SanMin TAN U-Xuan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第3期493-507,共15页
This paper comprehensively investigates the buckling load and the stability of a planar linear array deployable structure composed of scissor-like element(SLE)under compression.At present,the researches on deployable ... This paper comprehensively investigates the buckling load and the stability of a planar linear array deployable structure composed of scissor-like element(SLE)under compression.At present,the researches on deployable structure are mainly focused on configuration design and dynamics characteristics of the mechanisms,but less on structural instability.In fact,when the external load exceeds the structural critical load value,the deployable structure will be permanently deformed or even collapse directly and no longer have any bearing capacity.To address this issue,a new stability model is derived using linear elastic analysis method and substructure method to evaluate the buckling characteristics of the deployable structure with n SLEs when it is carried out in space,which can accurately obtain the structural instability load and can be used quantitatively to optimize the structure for making it have the most stable configuration.In addition,the effects of the number of elements,the length,material properties and flexibility of the bar,and the deployment degree on the buckling of the scissor deployable structure are investigated,and the results of the theoretical analysis are compared with simulation and analytical results,respectively,confirming that the proposed stability model not only is able to effectively predict the structural instability load but also determine which part of the deployable structure is unstable.It can be concluded that the stability of the deployable structure gradually decreases with the increase of the number of elements or the bar flexibility.In the calculation process,the critical load of each sub-element should be considered,and the minimum value of the critical loads of all subunits can be regarded as the instability load of the whole structure. 展开更多
关键词 deployable structure stability analysis buckling load sub structure linear array simulation
原文传递
Dynamic Assessment of the Carrying Capacity of Oilfield Derricks
14
作者 胡少伟 聂建国 +1 位作者 王伟 陈淮 《Tsinghua Science and Technology》 SCIE EI CAS 2001年第1期63-66,共4页
This paper presents a dynamic evaluation method to calculate the buckling strength of oilfield derricks. First, the linear relationship between the basic frequency and the ultimate strength of the cantilever structure... This paper presents a dynamic evaluation method to calculate the buckling strength of oilfield derricks. First, the linear relationship between the basic frequency and the ultimate strength of the cantilever structure with axial load is determined using the dynamic eigenvalue equations of the structure. Then, the basic frequency, ω 2 1i , corresponding to the load, N i, can be calculated or measured, and the linear relationship of ω 2 1i ~N i is plotted using the data mentioned above. The axial force corresponding to ω 2 1i =0 is the required buckling strength of the oilfield derrick. The suggested method can evaluate the buckling strength of oilfield derricks combining nondestructive testing with calculating. It is a convenient and practical method to estimate the carrying capacity of any steel structure. 展开更多
关键词 buckling load DERRICK dynamic assessment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部