The budding yeast Saccharomyces cerevisiae is a powerful model system for studying the cell polarity establishment.The cell polarization process is regulated by signaling molecules,which are initially distributed in t...The budding yeast Saccharomyces cerevisiae is a powerful model system for studying the cell polarity establishment.The cell polarization process is regulated by signaling molecules,which are initially distributed in the cytoplasm and then recruited to a proper location on the cell membrane in response to spatial cues or spontaneously.Polarization of these signaling molecules involves complex regulation,so the mathematical models become a useful tool to investigate the mechanism behind the process.In this review,we discuss how mathematical modeling has shed light on different regulations in the cell polarization.We also propose future applications for the mathematical modeling of cell polarization and morphogenesis.展开更多
Budding yeast (Saccharomyces cerevisiae) is a single cell model organism that is amenable to genome wide experimental interrogation using high-throughput genomics, proteomics
The baker's yeast Saccharomyces(S.)cerevisiae is a single-celled eukaryotic model organism widely used in research on life sciences.Being a unicellular organism,S.cerevisiae has some evident limitations in applica...The baker's yeast Saccharomyces(S.)cerevisiae is a single-celled eukaryotic model organism widely used in research on life sciences.Being a unicellular organism,S.cerevisiae has some evident limitations in application to neuroscience.However,yeast prions are extensively studied and they are known to share some hallmarks with mammalian prion protein or other amyloidogenic proteins found in the pathogenesis of Alzheimer's,Parkinson's,or Huntington's diseases.Therefore,the yeast S.cerevisiae has been widely used for basic research on aggregation properties of proteins in cellulo and on their propagation.Recently,a yeast-based study revealed that some regions of mammalian prion protein and amyloidβ1–42 are capable of induction and propagation of yeast prions.It is one of the examples showing that evolutionarily distant organisms share common mechanisms underlying the structural conversion of prion proteins making yeast cells a useful system for studying mammalian prion protein.S.cerevisiae has also been used to design novel screening systems for anti-prion compounds from chemical libraries.Yeastbased assays are cheap in maintenance and safe for the researcher,making them a very good choice to perform preliminary screening before further characterization in systems engaging mammalian cells infected with prions.In this review,not only classical red/white colony assay but also yeast-based screening assays developed during last year are discussed.Computational analysis and research carried out using yeast prions force us to expect that prions are widely present in nature.Indeed,the last few years brought us several examples indicating that the mammalian prion protein is no more peculiar protein–it seems that a better understanding of prion proteins nature-wide may aid us with the treatment of prion diseases and other amyloid-related medical conditions.展开更多
Gene circuits allow cells to carry out complex functions such as the precise regulation of biological metabolic processes.In this study,we combined,in the yeast S.cerevisiae,genetic regulatory elements with the enzyma...Gene circuits allow cells to carry out complex functions such as the precise regulation of biological metabolic processes.In this study,we combined,in the yeast S.cerevisiae,genetic regulatory elements with the enzymatic reactions of the human CYP2C9 and its redox partner CPR on luciferin substrates and diclofenac.S.cerevisiae cells were permeabilized and used as enzyme bags in order to host these metabolic reactions.We engineered three different(genetic)-enzymatic basic Boolean gates(YES,NOT,and N-IMPLY).In the YES and N-IMPLY gates,human CYP2C9 was expressed under the galactose-inducible GAL1 promoter.The carbon monoxide releasing molecule CORM-401 was used as an input in the NOT and N-IMPLY gates to impair CYP2C9 activity through inhibition of the Fe+2-heme prosthetic group in the active site of the human enzyme.Our study provides a new approach in designing synthetic bio-circuits and optimizing experimental conditions to favor the heterologous expression of human drug metabolic enzymes over their endogenous counterparts.This new approach will help study precise metabolic attributes of human P450s.展开更多
Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes.The construction of the large,gigabase(Gb)-sized genomes of higher organisms will deepen our understandin...Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes.The construction of the large,gigabase(Gb)-sized genomes of higher organisms will deepen our understanding of genetic blueprints significantly.But for the synthesis and assembly of such large-scale genomes,the development of new or expanded methods is required.In this study,we develop an efficient pipeline for the construction of large DNA fragments sized 100 kilobases(kb)or above from scratches and describe an efficient method for“scar-free”engineering of the assembled sequences.Our method,therefore,should provide a standard framework for producing long DNA molecules,which are critical materials for synthetic genomics and metabolic engineering.展开更多
文摘The budding yeast Saccharomyces cerevisiae is a powerful model system for studying the cell polarity establishment.The cell polarization process is regulated by signaling molecules,which are initially distributed in the cytoplasm and then recruited to a proper location on the cell membrane in response to spatial cues or spontaneously.Polarization of these signaling molecules involves complex regulation,so the mathematical models become a useful tool to investigate the mechanism behind the process.In this review,we discuss how mathematical modeling has shed light on different regulations in the cell polarization.We also propose future applications for the mathematical modeling of cell polarization and morphogenesis.
文摘Budding yeast (Saccharomyces cerevisiae) is a single cell model organism that is amenable to genome wide experimental interrogation using high-throughput genomics, proteomics
基金funded by the Polish National Science Centre MINIATURA3,grant No.501/66 GR-6220(to TI)。
文摘The baker's yeast Saccharomyces(S.)cerevisiae is a single-celled eukaryotic model organism widely used in research on life sciences.Being a unicellular organism,S.cerevisiae has some evident limitations in application to neuroscience.However,yeast prions are extensively studied and they are known to share some hallmarks with mammalian prion protein or other amyloidogenic proteins found in the pathogenesis of Alzheimer's,Parkinson's,or Huntington's diseases.Therefore,the yeast S.cerevisiae has been widely used for basic research on aggregation properties of proteins in cellulo and on their propagation.Recently,a yeast-based study revealed that some regions of mammalian prion protein and amyloidβ1–42 are capable of induction and propagation of yeast prions.It is one of the examples showing that evolutionarily distant organisms share common mechanisms underlying the structural conversion of prion proteins making yeast cells a useful system for studying mammalian prion protein.S.cerevisiae has also been used to design novel screening systems for anti-prion compounds from chemical libraries.Yeastbased assays are cheap in maintenance and safe for the researcher,making them a very good choice to perform preliminary screening before further characterization in systems engaging mammalian cells infected with prions.In this review,not only classical red/white colony assay but also yeast-based screening assays developed during last year are discussed.Computational analysis and research carried out using yeast prions force us to expect that prions are widely present in nature.Indeed,the last few years brought us several examples indicating that the mammalian prion protein is no more peculiar protein–it seems that a better understanding of prion proteins nature-wide may aid us with the treatment of prion diseases and other amyloid-related medical conditions.
文摘Gene circuits allow cells to carry out complex functions such as the precise regulation of biological metabolic processes.In this study,we combined,in the yeast S.cerevisiae,genetic regulatory elements with the enzymatic reactions of the human CYP2C9 and its redox partner CPR on luciferin substrates and diclofenac.S.cerevisiae cells were permeabilized and used as enzyme bags in order to host these metabolic reactions.We engineered three different(genetic)-enzymatic basic Boolean gates(YES,NOT,and N-IMPLY).In the YES and N-IMPLY gates,human CYP2C9 was expressed under the galactose-inducible GAL1 promoter.The carbon monoxide releasing molecule CORM-401 was used as an input in the NOT and N-IMPLY gates to impair CYP2C9 activity through inhibition of the Fe+2-heme prosthetic group in the active site of the human enzyme.Our study provides a new approach in designing synthetic bio-circuits and optimizing experimental conditions to favor the heterologous expression of human drug metabolic enzymes over their endogenous counterparts.This new approach will help study precise metabolic attributes of human P450s.
基金supported by the National Key Research and Development Program of China(2018YFA0900100 and 2019YFA0903800)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDPB18)+3 种基金the National Natural Science Foundation of China(31800069,32030004,31725002 and 32001065)Shenzhen Science and Technology Program(KQTD20180413181837372)Guangdong Provincial Key Laboratory of Synthetic Genomics(2019B030301006)Shenzhen Outstanding Talents Training Fund and the CAS President’s International Fellowship Initiative(2021VBB0002)。
文摘Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes.The construction of the large,gigabase(Gb)-sized genomes of higher organisms will deepen our understanding of genetic blueprints significantly.But for the synthesis and assembly of such large-scale genomes,the development of new or expanded methods is required.In this study,we develop an efficient pipeline for the construction of large DNA fragments sized 100 kilobases(kb)or above from scratches and describe an efficient method for“scar-free”engineering of the assembled sequences.Our method,therefore,should provide a standard framework for producing long DNA molecules,which are critical materials for synthetic genomics and metabolic engineering.