In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance sim...In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance simulator (SCAPS) in this work. By varying absorber and buffer layer thickness, photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) are determined. The highest efficiency achieved is 19.6% with WS<sub>2</sub> buffer layer. The impact of temperature on all CuO-based solar cells is also investigated.展开更多
Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device a...Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device applications. The composition, structural properties, surface morphol- ogy, and optical properties of Cd~_xZnxS thin films were characterized by energy dispersive analysis of X-ray tech- nique (EDAX), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometer tech- niques, respectively. The annealed films were observed to possess the deficient sulfur composition. The results of XRD show that the Cdl_xZnxS (x = 0. l) thin film annealed at 450 ~C forms hexagonal (wurtzite) structure with lattice parameters a = 0.408814 nm, c : 0.666059 nm, and its average grain size is 24.9902 nm. The diffraction peaks become strong with the increasing annealing temperatures. The surface of Cdl_~ZnxS (x = 0.1) thin film annealed at 450 ~C is uninterrupted and homogenous as compared to other temperatures. From optical properties, it is observed that the presence of small amount of Zn results in marked changes in the optical band gap of CdS. The band gaps of the Cdl_xZnxS thin films vary from 2.42 to 3.51 eV as composition varies from x = 0.0 to 1.0.展开更多
The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness,...The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented potycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.展开更多
VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant i...VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.展开更多
In this study, the authors investigated the performance of different buffer layers through the electrical parameters such as J<sub>sc</sub>, V<sub>oc</sub>, QE and η of the quaternary system C...In this study, the authors investigated the performance of different buffer layers through the electrical parameters such as J<sub>sc</sub>, V<sub>oc</sub>, QE and η of the quaternary system Cu(In,Ga)Se<sub>2</sub> solar cells. The performance of Cu(In,Ga)Se<sub>2</sub>solar cells has been modeled and numerically simulated by using the SCAPS- 1D device simulation tool. The cells with a ZnSe, Zn(O,S) and (Zn,Mg)O buffer layers were compared with the reference CdS buffer layer. The investigation of ZnSe, Zn(O, S) and (Zn,Mg)O-based cells to substitute the traditional CdS in the future shows that the ZnSe-buffer layer is a potential material to replace CdS, which revealed the best efficiency of 20.76%, the other electrical parameters are: J<sub>SC</sub> = 34.6 mA/cm<sup>2</sup>, V<sub>OC</sub> = 0.76 V and FF = 79.6%. The losses as a function of the temperature are estimated at 0.1%/K, among all kinds of buffer layers studied. We have also shown that the use of a high band-gap buffer layer is necessary to obtain a better short-circuit current density J<sub>SC</sub>. From our results, we note that the chalcogenide solar cells with Zn-based alternative buffer layer have almost the same stability thatthe traditional CdS buffer layer solar cells have.展开更多
We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using compositionally graded GaAsxSb1-x buffer layers. Optimization of GaAsxSb1-x growth parameter is aimed at obtaining high GaSb crys...We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using compositionally graded GaAsxSb1-x buffer layers. Optimization of GaAsxSb1-x growth parameter is aimed at obtaining high GaSb crystal quality and smooth GaSb surface. The optimized growth temperature and thickness of GaAsxSb1-x layers are found to be 420 degrees C and 0.5 mu m, respectively. The smallest full width at half maximum value and the root mean square surface roughness of 0.67nm over 2 x 2 mu m(2) area are achieved as a 250nm GaSb film is grown under optimized conditions.展开更多
CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buff...CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe-Cu buffer layers affect the solar cell conversion efficiencv and its fill factor.展开更多
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene)...The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.展开更多
Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suita...Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blende structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite structure by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show Al mode at approximately 350 cm^-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.展开更多
NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. I...NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤ 7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.展开更多
In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT)...In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.展开更多
Low pressure MOCVD has been used to investigate the properties of low temperature buffer layer deposition conditions and their influence on the properties of high temperature GaN epilayers grown subsequently. It is fo...Low pressure MOCVD has been used to investigate the properties of low temperature buffer layer deposition conditions and their influence on the properties of high temperature GaN epilayers grown subsequently. It is found that the surface morphology of the as grown buffer layer after thermal annealing at 1 030 ℃ and 1 050 ℃ depends strongly on the thickness of the buffer layer. In particular when a thick buffer layer is used, large trapezoidal nuclei are formed after annealing.展开更多
In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cel...In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-am BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.展开更多
Two soluble tetraalkyl-substituted zinc phthalocyanines(ZnPcs)for use as anode buffer layer materials in tris(8-hydroxyquinoline)aluminum(Alq3)-based organic light-emitting diodes(OLEDs)are presented in this work.The ...Two soluble tetraalkyl-substituted zinc phthalocyanines(ZnPcs)for use as anode buffer layer materials in tris(8-hydroxyquinoline)aluminum(Alq3)-based organic light-emitting diodes(OLEDs)are presented in this work.The holeblocking properties of these Zn Pc layers slowed the hole injection process into the Alq3 emissive layer greatly and thus reduced the production of unstable cationic Alq3(Alq3^+)species.This led to the enhanced brightness and efficiency when compared with the corresponding properties of OLEDs based on the popular poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)buffer layer.Furthermore,because of the high thermal and chemical stabilities of these Zn Pcs,a nonaqueous film fabrication process was realized together with improved charge balance in the OLEDs and enhanced OLED lifetimes.展开更多
The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit t...The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit the formation of NiO. In addition, the linear relationship between pre-depositing time and total depositing time is required to ensure the epitaxial growth of the films. The growth conditions of CeO2 and Y2O3 were comparatively studied, and it is found that the windows of substrate temperatures and pressures for CeO2 films are wider than that for Y2O3 films.展开更多
MgO thin films were deposited on Si(100) substrates by laser ablation under various substrate temperatures (Tsub),expecting to provide a candidate buffer layer for the textured growth of functional perovskite oxid...MgO thin films were deposited on Si(100) substrates by laser ablation under various substrate temperatures (Tsub),expecting to provide a candidate buffer layer for the textured growth of functional perovskite oxide films on Si substrates.The effect of Tsub on the preferred orientation,crystallinity and surface morphology of the films was investigated.MgO films in single-phase were obtained at 473-973 K.With increasing Tsub,the preferred orientation of the films changed from (200) to (111).The crystallinity and surface morphology was different too,depending on Tsub.At Tsub=673 K,the MgO film became uniform and smooth,exhibiting high crystallinity and a dense texture.展开更多
Using ZnO buffer layers prepared by simply thermal oxidation of ion beam sputtered Zn films, highly oriented and uniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporatio...Using ZnO buffer layers prepared by simply thermal oxidation of ion beam sputtered Zn films, highly oriented and uniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporation of Zn powder with flee catalysts at low temperature of 430℃ The ZnO micropillars show sharp hexagonal umbrella-like tips with thin ZnO nanowire grown on the tips. The umbrella-like tips grow in a layer-by-layer mode along the direction of [001]. The growth mechanism has been discussed. The formation of the micropillars basically depends on the gradually decreasing Zn vapor pressure and subsequently cooling process. The photoluminescence (PL) spectrum indicates a moderately good crystal quality of the ZnO micropillars. Our results may reinforce the understanding of the formation mechanism of different ZnO nano/microstructures. This kind of complex microstructures may find potential applications in multifunctional microdevices, optoelectronic and field emission devices.展开更多
Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage curre...Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.展开更多
Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/...Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.展开更多
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
文摘In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance simulator (SCAPS) in this work. By varying absorber and buffer layer thickness, photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) are determined. The highest efficiency achieved is 19.6% with WS<sub>2</sub> buffer layer. The impact of temperature on all CuO-based solar cells is also investigated.
基金financially supported by Key Natural Science Foundation of Education Department of Inner Mongolia Autonomous Region of China (No. NJZZ11013) Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2012MS0117)
文摘Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device applications. The composition, structural properties, surface morphol- ogy, and optical properties of Cd~_xZnxS thin films were characterized by energy dispersive analysis of X-ray tech- nique (EDAX), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometer tech- niques, respectively. The annealed films were observed to possess the deficient sulfur composition. The results of XRD show that the Cdl_xZnxS (x = 0. l) thin film annealed at 450 ~C forms hexagonal (wurtzite) structure with lattice parameters a = 0.408814 nm, c : 0.666059 nm, and its average grain size is 24.9902 nm. The diffraction peaks become strong with the increasing annealing temperatures. The surface of Cdl_~ZnxS (x = 0.1) thin film annealed at 450 ~C is uninterrupted and homogenous as compared to other temperatures. From optical properties, it is observed that the presence of small amount of Zn results in marked changes in the optical band gap of CdS. The band gaps of the Cdl_xZnxS thin films vary from 2.42 to 3.51 eV as composition varies from x = 0.0 to 1.0.
文摘The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented potycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.
基金financially supported by the National Natural Science Foundation of China (Nos. 51401046, 51572042, 61131005, 61021061, and 61271037)International Cooperation Projects (Nos. 2013HH0003 and 2015DFR50870)+3 种基金the 111 Project (No. B13042)the Sichuan Province S&T program (Nos. 2014GZ0003, 2015GZ0091, and 2015GZ0069)Fundamental Research Funds for the Central Universitiesthe start-up fund from the University of Electronic Science and Technology of China
文摘VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.
文摘In this study, the authors investigated the performance of different buffer layers through the electrical parameters such as J<sub>sc</sub>, V<sub>oc</sub>, QE and η of the quaternary system Cu(In,Ga)Se<sub>2</sub> solar cells. The performance of Cu(In,Ga)Se<sub>2</sub>solar cells has been modeled and numerically simulated by using the SCAPS- 1D device simulation tool. The cells with a ZnSe, Zn(O,S) and (Zn,Mg)O buffer layers were compared with the reference CdS buffer layer. The investigation of ZnSe, Zn(O, S) and (Zn,Mg)O-based cells to substitute the traditional CdS in the future shows that the ZnSe-buffer layer is a potential material to replace CdS, which revealed the best efficiency of 20.76%, the other electrical parameters are: J<sub>SC</sub> = 34.6 mA/cm<sup>2</sup>, V<sub>OC</sub> = 0.76 V and FF = 79.6%. The losses as a function of the temperature are estimated at 0.1%/K, among all kinds of buffer layers studied. We have also shown that the use of a high band-gap buffer layer is necessary to obtain a better short-circuit current density J<sub>SC</sub>. From our results, we note that the chalcogenide solar cells with Zn-based alternative buffer layer have almost the same stability thatthe traditional CdS buffer layer solar cells have.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB351902,2015CB932402 and 2012CB619203the National Natural Science Foundation of China under Grant Nos 61177070,11374295 and U1431231the National Key Research Program of China under Grant No 2011ZX01015-001
文摘We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using compositionally graded GaAsxSb1-x buffer layers. Optimization of GaAsxSb1-x growth parameter is aimed at obtaining high GaSb crystal quality and smooth GaSb surface. The optimized growth temperature and thickness of GaAsxSb1-x layers are found to be 420 degrees C and 0.5 mu m, respectively. The smallest full width at half maximum value and the root mean square surface roughness of 0.67nm over 2 x 2 mu m(2) area are achieved as a 250nm GaSb film is grown under optimized conditions.
基金the High Technology Research and Development Programme of China(No.2003AA513010)the National Natural Science Foundation of China(No.50079030).
文摘CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe-Cu buffer layers affect the solar cell conversion efficiencv and its fill factor.
基金Project supported by the National Natural Science Foundation of China(Grant No.61204014)the“Chenguang”Project(13CG42)+1 种基金supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,Chinathe Shanghai University Young Teacher Training Program of Shanghai Municipality,China
文摘The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of China (No.2006CB92200) and the National Natural Science Foundation of China (No.10774136).
文摘Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blende structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite structure by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show Al mode at approximately 350 cm^-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.
基金Project supported by National 863 Programof Ministry of Science and Technology of China (2002AA306211 ,2004AA306130)
文摘NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤ 7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.
基金Project supported by the National Key Science & Technology Special Project,China(Grant No.2008ZX01002-002)the Fundamental Research Funds for the Central Universities,China(Grant No.JY10000904009)the Major Program and State Key Program of the National Natural Science Foundation of China(Grant Nos.60890191 and 60736033)
文摘In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.
文摘Low pressure MOCVD has been used to investigate the properties of low temperature buffer layer deposition conditions and their influence on the properties of high temperature GaN epilayers grown subsequently. It is found that the surface morphology of the as grown buffer layer after thermal annealing at 1 030 ℃ and 1 050 ℃ depends strongly on the thickness of the buffer layer. In particular when a thick buffer layer is used, large trapezoidal nuclei are formed after annealing.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60978060, 10804006, and 10974013)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090009110027)+4 种基金the Research Fund for the Youth Scholars of the Doctoral Program of Higher Education, China (Grant No. 20070004031)the Beijing Municipal Natural Science Foundation of China (Grant No. 1102028)the Beijing Municipal Science & Technology Commission of China (Grant No. Z090803044009001)the National Basic Research Program of China (Grant No. 2010CB327705)the International Science and Technology Cooperation Program (Grant No. 2008DFA61420)
文摘In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-am BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.
基金Project supported by the Shenzhen Personal Maker Project,China(Grant No.GRCK2017082316173208)the Shenzhen Overseas High-level Talents Innovation Plan of Technical Innovation,China(Grant No.KQJSCX20180323140712012)the Special Funds for the Development of Strategic Emerging Industries in Shenzhen,China(Grant No.JCJY20170818154457845)
文摘Two soluble tetraalkyl-substituted zinc phthalocyanines(ZnPcs)for use as anode buffer layer materials in tris(8-hydroxyquinoline)aluminum(Alq3)-based organic light-emitting diodes(OLEDs)are presented in this work.The holeblocking properties of these Zn Pc layers slowed the hole injection process into the Alq3 emissive layer greatly and thus reduced the production of unstable cationic Alq3(Alq3^+)species.This led to the enhanced brightness and efficiency when compared with the corresponding properties of OLEDs based on the popular poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)buffer layer.Furthermore,because of the high thermal and chemical stabilities of these Zn Pcs,a nonaqueous film fabrication process was realized together with improved charge balance in the OLEDs and enhanced OLED lifetimes.
文摘The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit the formation of NiO. In addition, the linear relationship between pre-depositing time and total depositing time is required to ensure the epitaxial growth of the films. The growth conditions of CeO2 and Y2O3 were comparatively studied, and it is found that the windows of substrate temperatures and pressures for CeO2 films are wider than that for Y2O3 films.
基金Funded by the International Science and Technology Cooperation Project (No.2009DFB50470)the National Nature Science Foundation of China (No.50802071)International Science and Technology Cooperation Project of Hubei Province (No.2010BFA017)
文摘MgO thin films were deposited on Si(100) substrates by laser ablation under various substrate temperatures (Tsub),expecting to provide a candidate buffer layer for the textured growth of functional perovskite oxide films on Si substrates.The effect of Tsub on the preferred orientation,crystallinity and surface morphology of the films was investigated.MgO films in single-phase were obtained at 473-973 K.With increasing Tsub,the preferred orientation of the films changed from (200) to (111).The crystallinity and surface morphology was different too,depending on Tsub.At Tsub=673 K,the MgO film became uniform and smooth,exhibiting high crystallinity and a dense texture.
基金Supported by the National Natural Science Foundation of China (10575078)
文摘Using ZnO buffer layers prepared by simply thermal oxidation of ion beam sputtered Zn films, highly oriented and uniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporation of Zn powder with flee catalysts at low temperature of 430℃ The ZnO micropillars show sharp hexagonal umbrella-like tips with thin ZnO nanowire grown on the tips. The umbrella-like tips grow in a layer-by-layer mode along the direction of [001]. The growth mechanism has been discussed. The formation of the micropillars basically depends on the gradually decreasing Zn vapor pressure and subsequently cooling process. The photoluminescence (PL) spectrum indicates a moderately good crystal quality of the ZnO micropillars. Our results may reinforce the understanding of the formation mechanism of different ZnO nano/microstructures. This kind of complex microstructures may find potential applications in multifunctional microdevices, optoelectronic and field emission devices.
基金Project supported by the Foundation of the Education Commission of Shanghai Municipality (Grant Nos.07ZZ14, 08SG41)the National Natural Science Foundation of China (Grant No.50711130241)the Shanghai Rising Star Program (GrantNo.08QH14008)
文摘Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou,China (Grant No.G20220025)。
文摘Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.