The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga...The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.展开更多
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
The pervasive diffusion of digital technologies opened up to new concepts in managing and monitoring the processes occurring in our society.Information and Communication Technologies(ICTs)become enabling tools to reth...The pervasive diffusion of digital technologies opened up to new concepts in managing and monitoring the processes occurring in our society.Information and Communication Technologies(ICTs)become enabling tools to rethink our way of living,consuming and producing goods and services.Among these,the Internet of Things(IoT)represents the disruptive technology that may redefine the stages of the building process to meet renewed environmental challenges.This new technological paradigm imports in the Architecture,Engineering and Construction(AEC)sector new and not-tectonic instances.In this context,the paper maps the experiences related to the use of IoT for managing the building process.Through a systematic literature review,the article highlights the potential benefits generable by a widespread integration of IoT in the AEC sector.In particular,the article has three purposes:defining the IoT infrastructure for its proper application in the AEC sector;identifying IoT main application domains;investigating the integration modalities.展开更多
Sustainable building in China has gained attention both domestically and abroad. Despite the fast increase in sustainable assessment tools developed locally or adopted from overseas, there are still criticisms about t...Sustainable building in China has gained attention both domestically and abroad. Despite the fast increase in sustainable assessment tools developed locally or adopted from overseas, there are still criticisms about the current situation of weak implementation and lack of comprehensive consideration. The lack of consideration of economic and social aspects or building performance on whole building life cycle all lead to departure from the true meaning of sustainable development. And lack of participation on the part of stakeholders makes it too theoretical to be carried out. This research aims to develop a model to address this problem. This research started with review of current sustainable assessment tools applied in China. As the assessment indicators have clear regional disparities, and almost no current tool considers all three pillars of environmental, economic and social in building life cycle. An industry survey was therefore designed for generation of indicators at different building stages, and personal interviews relevant to different occupation in building industry were conducted to complement the questionnaire survey. After that, the model Building Sustainable Score (BSS) was developed based on the stakeholders’ participation. Finally, the model is verified by a case study.展开更多
When deciding on the best historic building retrofit,energy savings and thermal comfort can be quantitatively evaluated using an energy model,whereas conservation compatibility is intrinsically qualitative and reflect...When deciding on the best historic building retrofit,energy savings and thermal comfort can be quantitatively evaluated using an energy model,whereas conservation compatibility is intrinsically qualitative and reflects the perspective of the local heritage authority. We present a methodology that permits finding and comparing optimal retrofits for historic buildings in a multi-perspective and quantitative way. We use an analytic hierarchyprocess to quantify conservation compatibility by distilling a conservation score from the opinions of 10 experts in the field. This score,along with energy needs for heating and cooling and thermal comfort,are the three targets of a multi-objective optimization aimed at identifying optimal retrofits for a medieval building in the north of Italy,destined to become a museum. Retrofit measures considered were different kinds of external and internal envelope insulation,improvement of airtightness,replacement of windows,and ventilative cooling. The result is a portfolio of optimal retrofits that cover the whole range of conservation compatibility. We showthat in the analyzed case heritage preservation is compatible with a four-fold reduction in energy needs at a high thermal comfort level. Even higher energy savings are only achievable at the cost of heritage degradation.展开更多
In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and m...In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and modeling is accomplished for it. Response surface methodology is used to design the experiments and obtain statistical models for build time requirements corresponding to different orientations of the given primitive in modeller build volume. Contour width, air gap, slice height, raster width, raster angle and angle of orientation are treated as process parameters. Percentage contribution of individual process parameter is found to change for build time corresponding to different spatial orientations. Also, the average of build time requirement changes with spatial orientation. This paper attempts to clearly discuss and describe the observations with an aim to develop a clear understanding of effect of spatial variations on the build time for Fused Deposition Modelling process. This work is an integral part of process layout optimization and these results can effectively aid designers specially while tackling nesting issues.展开更多
Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open sour...Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop.展开更多
基金funded by the NationalNatural Science Foundation of China (Nos.11902229,11502181)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB22040502,XDC06030200).
文摘The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
文摘The pervasive diffusion of digital technologies opened up to new concepts in managing and monitoring the processes occurring in our society.Information and Communication Technologies(ICTs)become enabling tools to rethink our way of living,consuming and producing goods and services.Among these,the Internet of Things(IoT)represents the disruptive technology that may redefine the stages of the building process to meet renewed environmental challenges.This new technological paradigm imports in the Architecture,Engineering and Construction(AEC)sector new and not-tectonic instances.In this context,the paper maps the experiences related to the use of IoT for managing the building process.Through a systematic literature review,the article highlights the potential benefits generable by a widespread integration of IoT in the AEC sector.In particular,the article has three purposes:defining the IoT infrastructure for its proper application in the AEC sector;identifying IoT main application domains;investigating the integration modalities.
文摘Sustainable building in China has gained attention both domestically and abroad. Despite the fast increase in sustainable assessment tools developed locally or adopted from overseas, there are still criticisms about the current situation of weak implementation and lack of comprehensive consideration. The lack of consideration of economic and social aspects or building performance on whole building life cycle all lead to departure from the true meaning of sustainable development. And lack of participation on the part of stakeholders makes it too theoretical to be carried out. This research aims to develop a model to address this problem. This research started with review of current sustainable assessment tools applied in China. As the assessment indicators have clear regional disparities, and almost no current tool considers all three pillars of environmental, economic and social in building life cycle. An industry survey was therefore designed for generation of indicators at different building stages, and personal interviews relevant to different occupation in building industry were conducted to complement the questionnaire survey. After that, the model Building Sustainable Score (BSS) was developed based on the stakeholders’ participation. Finally, the model is verified by a case study.
文摘When deciding on the best historic building retrofit,energy savings and thermal comfort can be quantitatively evaluated using an energy model,whereas conservation compatibility is intrinsically qualitative and reflects the perspective of the local heritage authority. We present a methodology that permits finding and comparing optimal retrofits for historic buildings in a multi-perspective and quantitative way. We use an analytic hierarchyprocess to quantify conservation compatibility by distilling a conservation score from the opinions of 10 experts in the field. This score,along with energy needs for heating and cooling and thermal comfort,are the three targets of a multi-objective optimization aimed at identifying optimal retrofits for a medieval building in the north of Italy,destined to become a museum. Retrofit measures considered were different kinds of external and internal envelope insulation,improvement of airtightness,replacement of windows,and ventilative cooling. The result is a portfolio of optimal retrofits that cover the whole range of conservation compatibility. We showthat in the analyzed case heritage preservation is compatible with a four-fold reduction in energy needs at a high thermal comfort level. Even higher energy savings are only achievable at the cost of heritage degradation.
文摘In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and modeling is accomplished for it. Response surface methodology is used to design the experiments and obtain statistical models for build time requirements corresponding to different orientations of the given primitive in modeller build volume. Contour width, air gap, slice height, raster width, raster angle and angle of orientation are treated as process parameters. Percentage contribution of individual process parameter is found to change for build time corresponding to different spatial orientations. Also, the average of build time requirement changes with spatial orientation. This paper attempts to clearly discuss and describe the observations with an aim to develop a clear understanding of effect of spatial variations on the build time for Fused Deposition Modelling process. This work is an integral part of process layout optimization and these results can effectively aid designers specially while tackling nesting issues.
文摘Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop.