The current study investigated the value and significance of the existence of the old industrial buildings, as well as the necessity and difficulty to renovate the design. Combined with successful cases, this study an...The current study investigated the value and significance of the existence of the old industrial buildings, as well as the necessity and difficulty to renovate the design. Combined with successful cases, this study analyzed and showed that one should not only deal with the relationship between the original architectural style and construction of modem cities in the process of renovation design of the old industrial building space. More attention should also be paid to create new space to meet the functional requirements of the modem features, and then complete substantial renovation of old industrial building space through the innovative design. In the use of aesthetic innovative design for the renovation of the old industrial building space, people must respect the space of old industrial buildings as the prerequisite of the renovation design. It is needed to expound the local space reconstruction methods and design principles respectively on the basis of respect. And then one should grasp the whole space and make the structured design and reasonable use according to the new space functional requirements of different functional areas. This paper attempted to learn from environmental art study on the renovation of old industrial buildings space and in terms of innovative design. The authors explored the innovative thinking on the renovation design of old industrial building space through the analysis of the reality.展开更多
The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewa...The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.展开更多
Full utilization of underground space and buildings could have positive economic and social effects. However, the microclimate and air quality must be well controlled so that they are not harmful to human health. This...Full utilization of underground space and buildings could have positive economic and social effects. However, the microclimate and air quality must be well controlled so that they are not harmful to human health. This survey indicated that relative humidity is a common hygienic problem in underground space and buildings. Attention should be paid to humidity control and to the strengthening of routine ventilation at the construction stage. Carbon dioxide can be used as a hygiene index of air pollution; the sanitary standard for it in the air of underground buildings is 10%. The hygienic survey shows that the concentration of carbon dioxide is usually below this standard in the environments of underground space and buildings. (c)1989 Academic Press,Inc.展开更多
The importance and necessity of energy saving in the world have been discussed for many years,but achieving a logical and transparent solution is still one of the main challenges and problems of the world’s eco...The importance and necessity of energy saving in the world have been discussed for many years,but achieving a logical and transparent solution is still one of the main challenges and problems of the world’s economy.The rapid growth of energy consumption in the last two decades has caused the security of the domestic energy supply of buildings to face serious problems.In this research,first by entering parameters such as the type of materials,doors and windows,and the type of soil on the floor connected to the ground,etc.in the heat and cold load calculation software(HAP Carrier)as the design calculations and then in the second step entering the specifications inferred from the Iran’s national building code as a reference for energy saving calculations,calculations are performed and compared as the first criterion,and finally these two outputs are compared.The actual energy consumption and determination of the building energy consumption index are determined as another criterion,as well as the degree of deviation from the actual consumption.The results showed that the theoretical method and the thermal and refrigeration load calculations of the Zanjan Gas Company building have 6%difference in cooling load but the heating load is about 34%different,which means for cooling loads,the theoretical model can be used with high accuracy but for heating loads,the national building code needs fundamental changes.展开更多
There are many bottlenecks that limit the computing power of the Mobile Web3 D and they need to be solved before implementing a public fire evacuation system on this platform.In this study,we focus on three key proble...There are many bottlenecks that limit the computing power of the Mobile Web3 D and they need to be solved before implementing a public fire evacuation system on this platform.In this study,we focus on three key problems:(1)The scene data for large-scale building information modeling(BIM)are huge,so it is difficult to transmit the data via the Internet and visualize them on the Web;(2)The raw fire dynamic simulator(FDS)smoke diffusion data are also very large,so it is extremely difficult to transmit the data via the Internet and visualize them on the Web;(3)A smart artificial intelligence fire evacuation app for the public should be accurate and real-time.To address these problems,the following solutions are proposed:(1)The large-scale scene model is made lightweight;(2)The amount of dynamic smoke is also made lightweight;(3)The dynamic obstacle maps established from the scene model and smoke data are used for optimal path planning using a heuristic method.We propose a real-time fire evacuation system based on the ant colony optimization(RFES-ACO)algorithm with reused dynamic pheromones.Simulation results show that the public could use Mobile Web3 D devices to experience fire evacuation drills in real time smoothly.The real-time fire evacuation system(RFES)is efficient and the evacuation rate is better than those of the other two algorithms,i.e.,the leader-follower fire evacuation algorithm and the random fire evacuation algorithm.展开更多
Based on the structural characteristics of existing buildings and the disadvantages of current mixed ventilation mode in the application to large space buildings,an original column attachment ventilation(CAV)has been ...Based on the structural characteristics of existing buildings and the disadvantages of current mixed ventilation mode in the application to large space buildings,an original column attachment ventilation(CAV)has been proposed.In this study,the experiment utilized a room space with four columns uniformly distributed in the space to visualize the movement of attached airflow along the cylinder surface and the floor,the numerical technique was employed to study the effects of the column layout(i.e.,uniform,centralized,dispersed,and crossed distribution)on the air distribution of CAV mode in a standard four-column full scale model of a shopping mall.Seven indices,including airflow pattern,air diffusion performance index(ADPI),air temperature distribution,heat removal effectiveness,draught rate(DR),predicted mean vote(PMV),and carbon dioxide(CO2)concentration,were used to assess the ventilation performance.In the CAV mode with a uniform column layout scheme,the experimental results indicated that the air supply flows downward along the wall surface,forming a secondary attachment with the ground and spreading along the floor in a fan radiation flow mode.Further,an“air lake”-like speed and temperature distribution similar to displacement ventilation(DV)was formed in the occupied zone.In all simulation cases,it was found that the average air velocity was less than 0.25 m/s in occupied zone,the effectiveness for heat removal was more significant than 1.0,DR value was less than 20%,the PMV level can also satisfy most people.The average CO2 concentration was around 470 ppm in the occupied breathing zone.These results indicated that the CAV mode could be an efficient air distribution method.They demonstrated the technical feasibility of applying the CAV in the space under different column layout schemes.展开更多
With the development of information technology, the fire safety assessment of whole structure or region based on the computer simulation has become a hot topic. However, traditionally, the concerned studies are perfor...With the development of information technology, the fire safety assessment of whole structure or region based on the computer simulation has become a hot topic. However, traditionally, the concerned studies are performed separately for different objectives and difficult to perform an overall evaluation. A new multi-dimensional integration model and methodology for fire safety assessment were presented and two newly developed integrated systems were introduced to demonstrate the function of integration simulation technology in this paper. The first one is the analysis on the fire-resistant behaviors of whole structure under real fire loads. The second one is the study on fire evaluation and emergency rescue of campus based on geography information technology (GIS). Some practical examples are presented to illuminate the advantages of computer integration technology on fire safety assessment and emphasize some problems in the simulation. The results show that the multi-dimensional integration model offers a new way and platform for the integrating fire safety assessment of whole structure or region, and the integrated software developed is the useful engineering tools for cost-saving and safe design.展开更多
The relationship between the old and the new is a specific theme of architecture that bears witness not so much to the original appearance of the old but to its enduring meaning in historic Italian and European cities...The relationship between the old and the new is a specific theme of architecture that bears witness not so much to the original appearance of the old but to its enduring meaning in historic Italian and European cities.The complex palimpsest of signs,memories,and overwriting that time has layered on built forms opens questions of meaning that can be untangled only in the relationship between history,site and design.The investigation of structural characters of places and their relationships with cultural assets and heritage provides a layered set of readings,which is itself the forerun of an urban landscape design action.Beyond preserving the integrity of the material traces,there can only be the new.The test bench is therefore the project as a cognitive act around which to build‘case by case’the strategies for recovering urban identity.The series of projects for Cesano Maderno old town,north of Milan,exemplifies a design-led approach to the built heritage and historic urban landscape in which reading tools,conservation and design are shown in their mutual relationship.In this dialectic between the old and the new,the design is part of the architecture of time where the new,working through light reversible overwriting and measured grafting,becomes a further layer in the historical palimpsest and the authentic form of its enhancement and reuse.Integrating project strategies-from pure conservation to new architectural grafting,from reuse to overwriting-the sequence of designs give shape to a‘regenerative structure’that enhances as a system and for public use a set of introverted Baroque buildings and spaces along a historical promenade,re-centring the city around its brownfield core.展开更多
文摘The current study investigated the value and significance of the existence of the old industrial buildings, as well as the necessity and difficulty to renovate the design. Combined with successful cases, this study analyzed and showed that one should not only deal with the relationship between the original architectural style and construction of modem cities in the process of renovation design of the old industrial building space. More attention should also be paid to create new space to meet the functional requirements of the modem features, and then complete substantial renovation of old industrial building space through the innovative design. In the use of aesthetic innovative design for the renovation of the old industrial building space, people must respect the space of old industrial buildings as the prerequisite of the renovation design. It is needed to expound the local space reconstruction methods and design principles respectively on the basis of respect. And then one should grasp the whole space and make the structured design and reasonable use according to the new space functional requirements of different functional areas. This paper attempted to learn from environmental art study on the renovation of old industrial buildings space and in terms of innovative design. The authors explored the innovative thinking on the renovation design of old industrial building space through the analysis of the reality.
基金The National Natural Science Foundation of China(No.50478113)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50502)
文摘The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.
文摘Full utilization of underground space and buildings could have positive economic and social effects. However, the microclimate and air quality must be well controlled so that they are not harmful to human health. This survey indicated that relative humidity is a common hygienic problem in underground space and buildings. Attention should be paid to humidity control and to the strengthening of routine ventilation at the construction stage. Carbon dioxide can be used as a hygiene index of air pollution; the sanitary standard for it in the air of underground buildings is 10%. The hygienic survey shows that the concentration of carbon dioxide is usually below this standard in the environments of underground space and buildings. (c)1989 Academic Press,Inc.
文摘The importance and necessity of energy saving in the world have been discussed for many years,but achieving a logical and transparent solution is still one of the main challenges and problems of the world’s economy.The rapid growth of energy consumption in the last two decades has caused the security of the domestic energy supply of buildings to face serious problems.In this research,first by entering parameters such as the type of materials,doors and windows,and the type of soil on the floor connected to the ground,etc.in the heat and cold load calculation software(HAP Carrier)as the design calculations and then in the second step entering the specifications inferred from the Iran’s national building code as a reference for energy saving calculations,calculations are performed and compared as the first criterion,and finally these two outputs are compared.The actual energy consumption and determination of the building energy consumption index are determined as another criterion,as well as the degree of deviation from the actual consumption.The results showed that the theoretical method and the thermal and refrigeration load calculations of the Zanjan Gas Company building have 6%difference in cooling load but the heating load is about 34%different,which means for cooling loads,the theoretical model can be used with high accuracy but for heating loads,the national building code needs fundamental changes.
基金Project supported by the Key Research Projects of the Central University of Basic Scientific Research Funds for Cross Cooperation,China(No.201510-02)the Research Fund for the Doctoral Program of Higher Education,China(No.2013007211-0035)the Key Project in Science and Technology of Jilin Province,China(No.20140204088GX)
文摘There are many bottlenecks that limit the computing power of the Mobile Web3 D and they need to be solved before implementing a public fire evacuation system on this platform.In this study,we focus on three key problems:(1)The scene data for large-scale building information modeling(BIM)are huge,so it is difficult to transmit the data via the Internet and visualize them on the Web;(2)The raw fire dynamic simulator(FDS)smoke diffusion data are also very large,so it is extremely difficult to transmit the data via the Internet and visualize them on the Web;(3)A smart artificial intelligence fire evacuation app for the public should be accurate and real-time.To address these problems,the following solutions are proposed:(1)The large-scale scene model is made lightweight;(2)The amount of dynamic smoke is also made lightweight;(3)The dynamic obstacle maps established from the scene model and smoke data are used for optimal path planning using a heuristic method.We propose a real-time fire evacuation system based on the ant colony optimization(RFES-ACO)algorithm with reused dynamic pheromones.Simulation results show that the public could use Mobile Web3 D devices to experience fire evacuation drills in real time smoothly.The real-time fire evacuation system(RFES)is efficient and the evacuation rate is better than those of the other two algorithms,i.e.,the leader-follower fire evacuation algorithm and the random fire evacuation algorithm.
基金This study was jointly funded by the National Natural Science Foundation of China(No.51408477)the Innovative Talent Promotion Plan of Shaanxi Province(No.2018KJXX-087)and the Youth Talent Support Project of Xi’an Association for Science and Technology.
文摘Based on the structural characteristics of existing buildings and the disadvantages of current mixed ventilation mode in the application to large space buildings,an original column attachment ventilation(CAV)has been proposed.In this study,the experiment utilized a room space with four columns uniformly distributed in the space to visualize the movement of attached airflow along the cylinder surface and the floor,the numerical technique was employed to study the effects of the column layout(i.e.,uniform,centralized,dispersed,and crossed distribution)on the air distribution of CAV mode in a standard four-column full scale model of a shopping mall.Seven indices,including airflow pattern,air diffusion performance index(ADPI),air temperature distribution,heat removal effectiveness,draught rate(DR),predicted mean vote(PMV),and carbon dioxide(CO2)concentration,were used to assess the ventilation performance.In the CAV mode with a uniform column layout scheme,the experimental results indicated that the air supply flows downward along the wall surface,forming a secondary attachment with the ground and spreading along the floor in a fan radiation flow mode.Further,an“air lake”-like speed and temperature distribution similar to displacement ventilation(DV)was formed in the occupied zone.In all simulation cases,it was found that the average air velocity was less than 0.25 m/s in occupied zone,the effectiveness for heat removal was more significant than 1.0,DR value was less than 20%,the PMV level can also satisfy most people.The average CO2 concentration was around 470 ppm in the occupied breathing zone.These results indicated that the CAV mode could be an efficient air distribution method.They demonstrated the technical feasibility of applying the CAV in the space under different column layout schemes.
基金the National Natural Science Foundation of China (No. 50348028)
文摘With the development of information technology, the fire safety assessment of whole structure or region based on the computer simulation has become a hot topic. However, traditionally, the concerned studies are performed separately for different objectives and difficult to perform an overall evaluation. A new multi-dimensional integration model and methodology for fire safety assessment were presented and two newly developed integrated systems were introduced to demonstrate the function of integration simulation technology in this paper. The first one is the analysis on the fire-resistant behaviors of whole structure under real fire loads. The second one is the study on fire evaluation and emergency rescue of campus based on geography information technology (GIS). Some practical examples are presented to illuminate the advantages of computer integration technology on fire safety assessment and emphasize some problems in the simulation. The results show that the multi-dimensional integration model offers a new way and platform for the integrating fire safety assessment of whole structure or region, and the integrated software developed is the useful engineering tools for cost-saving and safe design.
文摘The relationship between the old and the new is a specific theme of architecture that bears witness not so much to the original appearance of the old but to its enduring meaning in historic Italian and European cities.The complex palimpsest of signs,memories,and overwriting that time has layered on built forms opens questions of meaning that can be untangled only in the relationship between history,site and design.The investigation of structural characters of places and their relationships with cultural assets and heritage provides a layered set of readings,which is itself the forerun of an urban landscape design action.Beyond preserving the integrity of the material traces,there can only be the new.The test bench is therefore the project as a cognitive act around which to build‘case by case’the strategies for recovering urban identity.The series of projects for Cesano Maderno old town,north of Milan,exemplifies a design-led approach to the built heritage and historic urban landscape in which reading tools,conservation and design are shown in their mutual relationship.In this dialectic between the old and the new,the design is part of the architecture of time where the new,working through light reversible overwriting and measured grafting,becomes a further layer in the historical palimpsest and the authentic form of its enhancement and reuse.Integrating project strategies-from pure conservation to new architectural grafting,from reuse to overwriting-the sequence of designs give shape to a‘regenerative structure’that enhances as a system and for public use a set of introverted Baroque buildings and spaces along a historical promenade,re-centring the city around its brownfield core.