This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change ma...This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change materials,with different melting points:PCMІ,PCM II,PCM III and PCM IV,when used in conjunction with a sheet metal roof.The exterior metal roofing surface temperature was held constant at 50℃,60℃,70℃and 80℃,using a thermal source(halogen lights)for 360 min to investigate and compare the thermal performance of the metal sheet roofing with and without phase change materials for each condition.The thermal behaviors of the phase change materials were analyzed by differential scanning calorimeter(DSC).The results showed the melting points of PCMІ,PCM II,PCM III and PCM IV were around 45℃,50℃,55℃and 59℃,respectively.The integration of PCM IV into the metal roofing sheet increased the thermal performance by reducing the room temperature up to 2.8%,1.4%,1.0%and 0.7%when compared with the normal metal roof sheet,at the controlled temperatures of 50℃,60℃,70℃and 80℃,respectively.The thermal absorption of the phase change materials also caused a time delay in the model room reaching a steady temperature.The integration of phase change materials with metal roofing sheets resulted in better thermal performance and conservation of electrical energy by reducing the demand for cooling.展开更多
The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and...The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.展开更多
INTRODCTION As skin wraps our body,building envelopes wraps buildings and therefore acts and performs the functions that the skin performs,especially in thermoregulating the building which results in decreasing the en...INTRODCTION As skin wraps our body,building envelopes wraps buildings and therefore acts and performs the functions that the skin performs,especially in thermoregulating the building which results in decreasing the energy consumed.The objective of this paper is to establish a building envelope as a living envelope able to control the heat in buildings the same way that nature does with our skin,without the use of electricity or mechanical elements,and hence decrease energy consumption and its devastating effect on the environment.This objective can be reached by using suitable smart building material and integrating it into the architectural design of the building.The methodology and objectives of this paper are as follows:1.Review the global warming problem,its consequences,and the role of the building sector in this problem.2.Study Biomimicry in architecture and its potential to decrease the share of the building sector’s role in global warming.3.Select a smart building material that would allow the building envelope to perform the same as human skin and review the reasons for its selection.4.Application of the selected building material in a case study and perform a thermal analysis simulation.展开更多
Traditional folk dwellings contain rich cultural connotations and plain architectural techniques.In architecture,material is the most fundamental thing,different materials can demonstrate different architectural forms...Traditional folk dwellings contain rich cultural connotations and plain architectural techniques.In architecture,material is the most fundamental thing,different materials can demonstrate different architectural forms,and reflect local characteristics and change of the time.Therefore,it is of great significance to explore the material selection of traditional Chinese folk dwellings.The paper took traditional folk dwellings in Hunan for example to analyze the regional materials and construction of these dwellings,discussed the application of traditional materials in modern architecture,used some cases to explore the innovative application of traditional materials,so as to figure out the new direction of applying traditional materials,and provide references for the construction of modern architecture.展开更多
We are all witnesses to the widespread use of wireless LANs (WLAN) and their easy implementation in indoor environments. Wi-Fi is the most popular technology for the WLAN. However, interference caused by building mate...We are all witnesses to the widespread use of wireless LANs (WLAN) and their easy implementation in indoor environments. Wi-Fi is the most popular technology for the WLAN. However, interference caused by building materials is a common, yet often overlooked, contributor to poor Wi-Fi performance. This interference occurs due to the nature of radio wave propagation and the characteristics of the wireless communication system. Therefore, during the implementation of these networks, one must consider the quasi-static nature of the Wi-Fi signal and its dependence on the influence of various building materials on the propagation of these waves. This paper presents the effects of building materials and structures on indoor environments for Wi-Fi 2.4 GHz and 5 GHz. To establish the interdependencies between factors influencing electric field levels, measurements were conducted in an experimental Wi-Fi network at different distances from the access point (AP). The results obtained show that the electric field strength of the Wi-Fi signal decreases depending on the distance, the building materials, and the transmitted frequency. Concrete material had the most significant impact on the strength of the electric field in Wi-Fi, while glass had a relatively minor effect on reducing it. Wi-Fi operates within the radio frequency spectrum, typically utilizing frequencies in the 2.4 GHz and 5 GHz bands. Additionally, measurements revealed that Wi-Fi signal penetration is more pronounced at lower frequencies (2.4 GHz) as opposed to the Wi-Fi signal 5 GHz. The findings can be used to address the impact of building materials and structures on indoor radio wave propagation, ultimately ensuring seamless Wi-Fi signal coverage within buildings.展开更多
In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be p...In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.展开更多
In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous p...In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous pigments were selected to estimate the photocatalytic activity for NO remove.This study is a good proof that pearlescent pigments can eliminate NO,and its performance is positively correlated with its titanium dioxide content.And this research will widen the application of nacreous pigments in functional building materials,and provide a new way to eliminate in door nitric oxide pollution.展开更多
A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. ...A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.展开更多
A novel photocatalytic cement based material was prepared. The distribution of TiO2 on the surface of cement was characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), which showed the rela...A novel photocatalytic cement based material was prepared. The distribution of TiO2 on the surface of cement was characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), which showed the relationship of photocatalysis and presence of TiO2. TiO2 also had an impact on cement hydration, which was studied by thermal analysis. With 300 W UV illuminations, formaldehyde and benzene were degraded efficiently by the prepared photocatalytic cement based materials. 15wt% TiO2/cement showed the highest degradation efficiency and capability. The results show that formaldehyde and benzene can be degraded within 4 and 9 hours, respectively. Besides, inorganic ions can induce TiO2 agglomeration. As a result, the presence of inorganic ions in cement is unfavorable for degradation. The photocatalytic cement based materials were fabricated and the degradation efficiency of formaldehyde was measured on building roof under sunlight illumination. Formaldehyde in glass chamber can be degraded thoroughly within 10 days.展开更多
The main aim of this paper is to investigate energy consumptions, CO2 emissions and costs during the production and life cycle of structural materials. The virgin and recycled metals as well as waste minerals such as ...The main aim of this paper is to investigate energy consumptions, CO2 emissions and costs during the production and life cycle of structural materials. The virgin and recycled metals as well as waste minerals such as fly ash, slag in concrete save energy consumption, CO2 emissions and costs. The importance and effectiveness of recycled materials will be statistically evaluated via energy consumption, carbon footprint, ultimate strength and their ratios. Embodied energy to ultimate strength or embodied carbon to ultimate strength ratios may emphasize the effectiveness of a sustainable material. The analyses in this study indicate the utilization of the recycled steel and C50 concrete with 50% fly ash or slag is the most efficient way of using sustainable materials.展开更多
The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practic...The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practice of Shanghai,the mechanism and pattern of waste building materials recycling are explored,in order to provide the reference for recycling of waste building materials and efficient promotion of land consolidation.展开更多
The main purpose of the implementation of the three-education reform concept is to improve the teaching quality and talent training level of higher vocational colleges.Through the reform,one can promote the optimizati...The main purpose of the implementation of the three-education reform concept is to improve the teaching quality and talent training level of higher vocational colleges.Through the reform,one can promote the optimization of teaching methods,provide more space for student’s self-development,and improve the quality of talent training.Building materials in higher vocational colleges are a high requirement for practical ability,which emphasizes the cultivation of students’practical ability.Under the three-education reform concept,the traditional teaching mode should be replaced to provide more practical opportunities for students,in return give more attention to the development of students’practical ability.This paper mainly explores the current situation and training strategies in building material professionals in higher vocational colleges under the reform of the three education systems for a reference.展开更多
A cellular material in the form of 3-layered sandwich structure material was prepared via sole use of mechanical stirring without any use of a foaming agent,while Tween-80 was employed as a foam stabilizer via a devel...A cellular material in the form of 3-layered sandwich structure material was prepared via sole use of mechanical stirring without any use of a foaming agent,while Tween-80 was employed as a foam stabilizer via a developed in-situ mold casting.The resulting structure displayed a good appearance with no visual defects.The 3-layered composition of the sandwish structure,“nonporous resin layer-porous foam layer-nonporous resin layer”,was examined in terms of the microstructure,density&density distribution,pulverization ratio,mechanical strength,insulation and flame retardant performance.It was indicated from the results that the bonding between the resin layer and foam layer was tight,while the tensile rupture always occurred in the porous layer.Also,the density of the sandwich structure material was symmetrical with“saddle”distribution,and a uniform density for any given layer.The increase in the density at the interface layer provided a good interpretation for the tensile rupture never occurred at the interface.The brittleness resistance of the developed material was significantly improved,and the pulverization ratio was sharply decreased from 9.93%to 0.31%.The material acquired a thermal conductivity and limiting oxygen index(LOI)of 0.0241 W/m⋅K and 29.92%,respectively,indicating potential use of such materials broadly in fields of insulation and flame retardancy.展开更多
Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are consider...Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are considered through Water Vapor Adsorption Isotherm(WVAI)and Retention Curve(RC)functions which are constitutive laws characterizing water activity within a porous medium.The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function(PSDF)and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges.The microstructure of the porous medium is represented statistically by a bundle of tortuous parallel pores through its PSDF.Firstly,the influence of contact angle and temperature on storage properties were investigated.Secondly,a parametric study was performed to see the influence of the PSDF shape on storage properties.Three cases were studied considering the number of modalities,the weight of each modality and the dispersion around mean radius.Finally,as a validation,the proposed model for WVAI were compared to existing model from literature showing a good agreement.This study showed that the proposed models are capable to reproduce various shapes of storage functions.It also highlighted the link between microstructure and adsorption-retention phenomena.展开更多
Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study...Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study focuses on the performances of materials obtained by combining a standard building material with a PCM.In particular,two different materials mixed with the same PCM are considered under the same climatic conditions.The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe.The results show that the addition of PCM to concrete and bricks can improve the thermal inertia of the resulting material.展开更多
Architectural emotion, to a large extent, is reflected in the emotionalization of building materials. The exploration of the vitality and spiritual connotation of the building materials is a new direction of expressin...Architectural emotion, to a large extent, is reflected in the emotionalization of building materials. The exploration of the vitality and spiritual connotation of the building materials is a new direction of expressing architectural feelings. This paper explores the visual features and connotation of various building materials from the perspective of public art, with a view to understanding the characteristics of building materials and creating unique buildings with a strong character.展开更多
Iron & Steel Industry China's outputs of crude steel, steel products, coke and ferrous alloys in 2012 were 716.54 million tons (up 3.1% YOY), 051.86 million tons (up 7.7% YOY), 443.23 million tons (up 5.2% YOY...Iron & Steel Industry China's outputs of crude steel, steel products, coke and ferrous alloys in 2012 were 716.54 million tons (up 3.1% YOY), 051.86 million tons (up 7.7% YOY), 443.23 million tons (up 5.2% YOY) and 31.29 million tons (up 15% YOY),展开更多
The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part...The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part of and widely used in the building industry. Energy conservation by building materials has become an inevitable way of sustainable development. Centering on the building industry, this paper mainly discusses in detail the energy conservation ways by ecological architecture and building materials.展开更多
Based on the recent research at home and abroad,this paper summarizes the preparation of cement clinker,baking-free brick,subgrade filler and ceramsite from sediment,and puts forward relevant suggestions and prospects...Based on the recent research at home and abroad,this paper summarizes the preparation of cement clinker,baking-free brick,subgrade filler and ceramsite from sediment,and puts forward relevant suggestions and prospects for the future research direction of sediment.展开更多
基金The authors would like to thank the Thailand Science Research and Innovation(TSRI),Faculty of Science,Naresuan University for providing financial support to this research work,and our research center.
文摘This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change materials,with different melting points:PCMІ,PCM II,PCM III and PCM IV,when used in conjunction with a sheet metal roof.The exterior metal roofing surface temperature was held constant at 50℃,60℃,70℃and 80℃,using a thermal source(halogen lights)for 360 min to investigate and compare the thermal performance of the metal sheet roofing with and without phase change materials for each condition.The thermal behaviors of the phase change materials were analyzed by differential scanning calorimeter(DSC).The results showed the melting points of PCMІ,PCM II,PCM III and PCM IV were around 45℃,50℃,55℃and 59℃,respectively.The integration of PCM IV into the metal roofing sheet increased the thermal performance by reducing the room temperature up to 2.8%,1.4%,1.0%and 0.7%when compared with the normal metal roof sheet,at the controlled temperatures of 50℃,60℃,70℃and 80℃,respectively.The thermal absorption of the phase change materials also caused a time delay in the model room reaching a steady temperature.The integration of phase change materials with metal roofing sheets resulted in better thermal performance and conservation of electrical energy by reducing the demand for cooling.
文摘The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.
文摘INTRODCTION As skin wraps our body,building envelopes wraps buildings and therefore acts and performs the functions that the skin performs,especially in thermoregulating the building which results in decreasing the energy consumed.The objective of this paper is to establish a building envelope as a living envelope able to control the heat in buildings the same way that nature does with our skin,without the use of electricity or mechanical elements,and hence decrease energy consumption and its devastating effect on the environment.This objective can be reached by using suitable smart building material and integrating it into the architectural design of the building.The methodology and objectives of this paper are as follows:1.Review the global warming problem,its consequences,and the role of the building sector in this problem.2.Study Biomimicry in architecture and its potential to decrease the share of the building sector’s role in global warming.3.Select a smart building material that would allow the building envelope to perform the same as human skin and review the reasons for its selection.4.Application of the selected building material in a case study and perform a thermal analysis simulation.
文摘Traditional folk dwellings contain rich cultural connotations and plain architectural techniques.In architecture,material is the most fundamental thing,different materials can demonstrate different architectural forms,and reflect local characteristics and change of the time.Therefore,it is of great significance to explore the material selection of traditional Chinese folk dwellings.The paper took traditional folk dwellings in Hunan for example to analyze the regional materials and construction of these dwellings,discussed the application of traditional materials in modern architecture,used some cases to explore the innovative application of traditional materials,so as to figure out the new direction of applying traditional materials,and provide references for the construction of modern architecture.
文摘We are all witnesses to the widespread use of wireless LANs (WLAN) and their easy implementation in indoor environments. Wi-Fi is the most popular technology for the WLAN. However, interference caused by building materials is a common, yet often overlooked, contributor to poor Wi-Fi performance. This interference occurs due to the nature of radio wave propagation and the characteristics of the wireless communication system. Therefore, during the implementation of these networks, one must consider the quasi-static nature of the Wi-Fi signal and its dependence on the influence of various building materials on the propagation of these waves. This paper presents the effects of building materials and structures on indoor environments for Wi-Fi 2.4 GHz and 5 GHz. To establish the interdependencies between factors influencing electric field levels, measurements were conducted in an experimental Wi-Fi network at different distances from the access point (AP). The results obtained show that the electric field strength of the Wi-Fi signal decreases depending on the distance, the building materials, and the transmitted frequency. Concrete material had the most significant impact on the strength of the electric field in Wi-Fi, while glass had a relatively minor effect on reducing it. Wi-Fi operates within the radio frequency spectrum, typically utilizing frequencies in the 2.4 GHz and 5 GHz bands. Additionally, measurements revealed that Wi-Fi signal penetration is more pronounced at lower frequencies (2.4 GHz) as opposed to the Wi-Fi signal 5 GHz. The findings can be used to address the impact of building materials and structures on indoor radio wave propagation, ultimately ensuring seamless Wi-Fi signal coverage within buildings.
文摘In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.
基金supported by the National Natural Science Foundation of China(51872147)the 111 Project(D20015)the Program for Innovative Research Team of Science and Technology in the Universities of Henan Province(19IRTSTHN025)。
文摘In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous pigments were selected to estimate the photocatalytic activity for NO remove.This study is a good proof that pearlescent pigments can eliminate NO,and its performance is positively correlated with its titanium dioxide content.And this research will widen the application of nacreous pigments in functional building materials,and provide a new way to eliminate in door nitric oxide pollution.
基金Supported by the National Natural Science Foundation of China(51472086,51002051)CAS Key Laboratory of Carbon Materials(No KLCMKFJJ1703)
文摘A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.
基金Funded by the National Natural Science Foundation of China(Nos.51478370 and 51461135005)
文摘A novel photocatalytic cement based material was prepared. The distribution of TiO2 on the surface of cement was characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), which showed the relationship of photocatalysis and presence of TiO2. TiO2 also had an impact on cement hydration, which was studied by thermal analysis. With 300 W UV illuminations, formaldehyde and benzene were degraded efficiently by the prepared photocatalytic cement based materials. 15wt% TiO2/cement showed the highest degradation efficiency and capability. The results show that formaldehyde and benzene can be degraded within 4 and 9 hours, respectively. Besides, inorganic ions can induce TiO2 agglomeration. As a result, the presence of inorganic ions in cement is unfavorable for degradation. The photocatalytic cement based materials were fabricated and the degradation efficiency of formaldehyde was measured on building roof under sunlight illumination. Formaldehyde in glass chamber can be degraded thoroughly within 10 days.
文摘The main aim of this paper is to investigate energy consumptions, CO2 emissions and costs during the production and life cycle of structural materials. The virgin and recycled metals as well as waste minerals such as fly ash, slag in concrete save energy consumption, CO2 emissions and costs. The importance and effectiveness of recycled materials will be statistically evaluated via energy consumption, carbon footprint, ultimate strength and their ratios. Embodied energy to ultimate strength or embodied carbon to ultimate strength ratios may emphasize the effectiveness of a sustainable material. The analyses in this study indicate the utilization of the recycled steel and C50 concrete with 50% fly ash or slag is the most efficient way of using sustainable materials.
基金Sponsored by Social Development Project of “Science and Technology Innovation Action Plan” of Shanghai Science and Technology Commission in 2019 (19DZ1203400)。
文摘The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practice of Shanghai,the mechanism and pattern of waste building materials recycling are explored,in order to provide the reference for recycling of waste building materials and efficient promotion of land consolidation.
文摘The main purpose of the implementation of the three-education reform concept is to improve the teaching quality and talent training level of higher vocational colleges.Through the reform,one can promote the optimization of teaching methods,provide more space for student’s self-development,and improve the quality of talent training.Building materials in higher vocational colleges are a high requirement for practical ability,which emphasizes the cultivation of students’practical ability.Under the three-education reform concept,the traditional teaching mode should be replaced to provide more practical opportunities for students,in return give more attention to the development of students’practical ability.This paper mainly explores the current situation and training strategies in building material professionals in higher vocational colleges under the reform of the three education systems for a reference.
基金National Natural Science Foundation of China(NSFC 31760187,31971595)Yunnan Provincial Natural Science Foundation(2017FB060)+1 种基金the“Ten-thousand Program”–Youth Talent Support Program and Yunnan Provincial Reserve Talents for Middle&Young Academic and Technical Leaders(2019HB026)the 111 Project(D21027).
文摘A cellular material in the form of 3-layered sandwich structure material was prepared via sole use of mechanical stirring without any use of a foaming agent,while Tween-80 was employed as a foam stabilizer via a developed in-situ mold casting.The resulting structure displayed a good appearance with no visual defects.The 3-layered composition of the sandwish structure,“nonporous resin layer-porous foam layer-nonporous resin layer”,was examined in terms of the microstructure,density&density distribution,pulverization ratio,mechanical strength,insulation and flame retardant performance.It was indicated from the results that the bonding between the resin layer and foam layer was tight,while the tensile rupture always occurred in the porous layer.Also,the density of the sandwich structure material was symmetrical with“saddle”distribution,and a uniform density for any given layer.The increase in the density at the interface layer provided a good interpretation for the tensile rupture never occurred at the interface.The brittleness resistance of the developed material was significantly improved,and the pulverization ratio was sharply decreased from 9.93%to 0.31%.The material acquired a thermal conductivity and limiting oxygen index(LOI)of 0.0241 W/m⋅K and 29.92%,respectively,indicating potential use of such materials broadly in fields of insulation and flame retardancy.
文摘Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are considered through Water Vapor Adsorption Isotherm(WVAI)and Retention Curve(RC)functions which are constitutive laws characterizing water activity within a porous medium.The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function(PSDF)and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges.The microstructure of the porous medium is represented statistically by a bundle of tortuous parallel pores through its PSDF.Firstly,the influence of contact angle and temperature on storage properties were investigated.Secondly,a parametric study was performed to see the influence of the PSDF shape on storage properties.Three cases were studied considering the number of modalities,the weight of each modality and the dispersion around mean radius.Finally,as a validation,the proposed model for WVAI were compared to existing model from literature showing a good agreement.This study showed that the proposed models are capable to reproduce various shapes of storage functions.It also highlighted the link between microstructure and adsorption-retention phenomena.
文摘Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study focuses on the performances of materials obtained by combining a standard building material with a PCM.In particular,two different materials mixed with the same PCM are considered under the same climatic conditions.The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe.The results show that the addition of PCM to concrete and bricks can improve the thermal inertia of the resulting material.
基金Sponsored by Ninth"Six Talent Peaks"Projects in Jiangsu Province in 2012(2012-JZ-007)
文摘Architectural emotion, to a large extent, is reflected in the emotionalization of building materials. The exploration of the vitality and spiritual connotation of the building materials is a new direction of expressing architectural feelings. This paper explores the visual features and connotation of various building materials from the perspective of public art, with a view to understanding the characteristics of building materials and creating unique buildings with a strong character.
文摘Iron & Steel Industry China's outputs of crude steel, steel products, coke and ferrous alloys in 2012 were 716.54 million tons (up 3.1% YOY), 051.86 million tons (up 7.7% YOY), 443.23 million tons (up 5.2% YOY) and 31.29 million tons (up 15% YOY),
文摘The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part of and widely used in the building industry. Energy conservation by building materials has become an inevitable way of sustainable development. Centering on the building industry, this paper mainly discusses in detail the energy conservation ways by ecological architecture and building materials.
基金Natural Science and Technology Project of Jiangxi University of Technology(ZR2010).
文摘Based on the recent research at home and abroad,this paper summarizes the preparation of cement clinker,baking-free brick,subgrade filler and ceramsite from sediment,and puts forward relevant suggestions and prospects for the future research direction of sediment.