The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3...The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3-DOF PM-KR)and the influence of redundant parts on the PM-KR are analyzed.Firstly,the kinematics model of the PM-KR is established.The inverse solutions,the Jacobian matrix,and the workspace of the PM-KR are solved.Secondly,the influence of redundancy on the PM-KR is analyzed.Since there exists kinematic redundancy,the PM-KR possesses fault-tolerant performance.By locking one actuating joint or two actuating joints simultaneously,the fault-tolerant workspace is obtained.When the position of the redundant part is changed,the workspace and singularity will be changed.The results show that kinematic redundancy can be used to avoid singularity.Finally,the simulations are performed to prove the theoretical analysis.展开更多
Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute s...Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.展开更多
Redundant actuator is the key component of Fly-By-Wire (FBW) system in which exists the inherent force fighting among different redundant channels at colligation point, This paper establishes the mathematical model ...Redundant actuator is the key component of Fly-By-Wire (FBW) system in which exists the inherent force fighting among different redundant channels at colligation point, This paper establishes the mathematical model of quad redundant actuator (QRA), investigates the force equalization algorithm and carries out the performance degradation simulation and reliability analysis under the first failure and the second failure. The results indicate that the optimal equalization algorithm can solve the force fighting effectively, and the QRA can operate at degradation performance continuously under the first failure and the second failure. With the dynamic fault tree analysis, this paper calculates the reliability based on the performance of QRA and proves that the redundant actuator has very high reliability and safety.展开更多
The development and application of new reliability models and methods are presented to analyze the system relia- bility of complex condition monitoring systems.The methods include a method analyzing failure modes of a...The development and application of new reliability models and methods are presented to analyze the system relia- bility of complex condition monitoring systems.The methods include a method analyzing failure modes of a type of redundant con- dition monitoring systems (RCMS) by invoking failure tree model,Markov modeling techniques for analyzing system reliability of RCMS,and methods for estimating Markov model parameters.Furthermore,a computing case is investigated and many conclu- sions upon this case are summarized.Results show that the method proposed here is practical and valuable for designing condition monitoring systems and their maintenance.展开更多
This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobi...This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.展开更多
Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology. A variety of enrichment analysis tools have been developed in recent years, but mos...Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology. A variety of enrichment analysis tools have been developed in recent years, but most output a long list of significantly enriched terms that are often redundant, making it difficult to extract the most meaningful functions. In this paper, we present GOMA, a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules. With this method, we systematically revealed functional GO modules, i.e., groups of functionally similar GO terms, via an optimization model and then ranked them by enrichment scores. Our new method simplifies enrichment analysis results by reducing redundancy, thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results.展开更多
This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use...This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.展开更多
Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot ...Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot get ful observability except the up-axis accelerometer. However, the ful skewed redundant SINS (RSINS) can not only enhance the reliability of the system, but also improve the accuracy of the system, such as the initial alignment. Firstly, the observability of the system state includes attitude errors and al the inertial sensors biases are analyzed with the global perspective method: any three gyroscopes and three accelerometers can be assembled into an independent subordinate SINS (sub-SINS);the system state can be uniquely confirmed by the coupling connec-tions of al the sub-SINSs;the attitude errors and random constant biases of al the inertial sensors are observable. However, the ran-dom noises of the inertial sensors are not taken into account in the above analyzing process. Secondly, the ful-observable Kalman filter which can be applied to the actual RSINS containing random noises is established; the system state includes the position, ve-locity, attitude errors of al the sub-SINSs and the random constant biases of the redundant inertial sensors. At last, the initial self-alignment process of a typical four-redundancy ful skewed RSINS is simulated: the horizontal attitudes (pitch, rol ) errors and yaw error can be exactly evaluated within 80 s and 100 s respectively, while the random constant biases of gyroscopes and accelero-meters can be precisely evaluated within 120 s. For the ful skewed RSINS, the self-alignment accuracy is greatly improved, mean-while the self-alignment time is widely shortened.展开更多
The problems of current highly redundant flight control system are analyzed in this paper. Our study gives methods of utilizing other information to reduce physical components on the condition of meeting the reliabili...The problems of current highly redundant flight control system are analyzed in this paper. Our study gives methods of utilizing other information to reduce physical components on the condition of meeting the reliability requirements for flight control system. The strategies presented in this paper mainly include information redundancy, multi-thread, time redundancy, geometry space redundancy, etc.. Analysis and simulation show these non-hardware based methods can reduce the requirement of system hardware level and thus reduce the system complexity, weight, space, costs and R&D (research and development) time.展开更多
In this paper, one of the most classical statistical methods, Canonical Correlation Analysis (CCA) is applied to identify quantitatively the driving forces of landuse structure in Yulin Prefecture. The main analysis i...In this paper, one of the most classical statistical methods, Canonical Correlation Analysis (CCA) is applied to identify quantitatively the driving forces of landuse structure in Yulin Prefecture. The main analysis is carried out through the software SPSS with the data on the level of towns and townships in 1992. The results indicate that landuse structure is determined by comprehensive action of different factors. Landuse structure with rural characteristics is mainly determined by geographical factors such as the elevation, temperature and precipitation, while the landuse structure with urban characteristics is mainly determined by demographic and socioeconomic conditions. At the same time, tests were carried out through the canonical correlation coefficient and redundancy analysis.展开更多
X-Code is one of the most important redundant array of independent disk (RAID)-6 codes which are capable of tolerating double disk failures. However, the code length of X-Code is restricted to be a prime number, and...X-Code is one of the most important redundant array of independent disk (RAID)-6 codes which are capable of tolerating double disk failures. However, the code length of X-Code is restricted to be a prime number, and such code length restriction of X-Code limits its usage in the real storage systems. Moreover, as a vertical RAID-6 code, X-Code can not be extended easily to an arbitrary code length like horizontal RAID-6 codes. In this paper, a novel and efficient code shortening algorithm for X-Code is proposed to extend X-Code to an arbitrary length. It can be further proved that the code shortening algorithm maintains the maximum-distance-separable (MDS) property of X-Code, and namely, the shortened X-Code is still MDS code with the optimal space efficiency. In the context of the shortening algorithm for X-Code, an in-depth performance analysis on X-Code at consecutive code lengths is conducted, and the impacts of the code shortening algorithm on the performance of X-Code in various performance metrics are revealed.展开更多
Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy...Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.展开更多
The paper in the introductory part reviews various definitions and interpretations of structural redundancy in mechanics. The study focuses on the general structural redundancy of systems after sequences of component ...The paper in the introductory part reviews various definitions and interpretations of structural redundancy in mechanics. The study focuses on the general structural redundancy of systems after sequences of component failures followed by possible load redistributions. The second section briefly summarizes the Event Oriented System Analysis and structural redundancy in terms of the conditional probabilistic entropy. Mechanical responses to adverse loads in this approach are represented by random operational and failure events in the lifetime. The general redundancy measure in the third section of the paper employs the information entropy and goes beyond existing formulations since it includes all functional modes in service. The paper continues with a summary of traditional redundancy indices. In addition, it proposes an alternative redundancy index that accounts for the transition to secondary functional level in case of failures of primary components. The example of a ship structure illustrates the usage of the conditional entropy of subsystems of operational events and compares it to the traditional and newly proposed redundancy indices. The study at the end investigates how to enhance the safety of structures by using the redundancy based design.展开更多
The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getti...The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getting intersection and union to complete type synthesis.The number of redundant parallel mechanisms obtained by these two methods is limited.In this paper,based on Grassmann line geometry and Atlas method,a novel and effective method for type synthesis of redundant actuated parallel mechanisms(PMs)with closed-loop units is proposed.Firstly,the degree of freedom(DOF)and constraint line graph of the moving platform are determined successively,and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph,and a branch constraint allocation scheme is formulated based on the allocation criteria.Secondly,a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units.Finally,the branch chains that meet the requirements of branch chains configuration criteria and F&C(degree of freedom&constraint)line graph are assembled.In this paper,two types of 2 rotational and 1 translational(2R1T)redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational(2T1R)redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples,and 238,92 and 15 new configurations were synthesized.All the mechanisms contain closed-loop units,and the mechanisms and the actuators both have good symmetry.Therefore,all the mechanisms have excellent comprehensive performance,in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled.The instantaneous analysis shows that all mechanisms are not instantaneous,which proves the feasibility and practicability of the method.展开更多
A complex number mode analysis approach is proposed for vibration reducing of structural flexible redundant manipulators by utilizing self motion. In the proposed approach, the self motion is evaluated to nullify th...A complex number mode analysis approach is proposed for vibration reducing of structural flexible redundant manipulators by utilizing self motion. In the proposed approach, the self motion is evaluated to nullify the modal exciting force of flexural motion, and the approach can be freely used when the degree of freedom of flexural motion is much greater than the available degree of reundancy. The availability and effectiveness of the proposed approach are demonstrated through numerical simulation with a four link spatial robotic manipulator possessing an end flexible link.展开更多
In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor s...In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.展开更多
基金Fundamental Research Funds for the Central Universities(Grant No.2022JBZX025)Natural Science Foundation of Hebei Province(Grant No.E2022105029)National Natural Science Foundation of China(Grant No.51875033).
文摘The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3-DOF PM-KR)and the influence of redundant parts on the PM-KR are analyzed.Firstly,the kinematics model of the PM-KR is established.The inverse solutions,the Jacobian matrix,and the workspace of the PM-KR are solved.Secondly,the influence of redundancy on the PM-KR is analyzed.Since there exists kinematic redundancy,the PM-KR possesses fault-tolerant performance.By locking one actuating joint or two actuating joints simultaneously,the fault-tolerant workspace is obtained.When the position of the redundant part is changed,the workspace and singularity will be changed.The results show that kinematic redundancy can be used to avoid singularity.Finally,the simulations are performed to prove the theoretical analysis.
文摘Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.
文摘Redundant actuator is the key component of Fly-By-Wire (FBW) system in which exists the inherent force fighting among different redundant channels at colligation point, This paper establishes the mathematical model of quad redundant actuator (QRA), investigates the force equalization algorithm and carries out the performance degradation simulation and reliability analysis under the first failure and the second failure. The results indicate that the optimal equalization algorithm can solve the force fighting effectively, and the QRA can operate at degradation performance continuously under the first failure and the second failure. With the dynamic fault tree analysis, this paper calculates the reliability based on the performance of QRA and proves that the redundant actuator has very high reliability and safety.
文摘The development and application of new reliability models and methods are presented to analyze the system relia- bility of complex condition monitoring systems.The methods include a method analyzing failure modes of a type of redundant con- dition monitoring systems (RCMS) by invoking failure tree model,Markov modeling techniques for analyzing system reliability of RCMS,and methods for estimating Markov model parameters.Furthermore,a computing case is investigated and many conclu- sions upon this case are summarized.Results show that the method proposed here is practical and valuable for designing condition monitoring systems and their maintenance.
基金supported by the National Natural Science Foundation of China(No.12072304).
文摘This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.
基金supported by grants from the National Natural Science Foundation of China(No.60970091, 61171007, 11131009)
文摘Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology. A variety of enrichment analysis tools have been developed in recent years, but most output a long list of significantly enriched terms that are often redundant, making it difficult to extract the most meaningful functions. In this paper, we present GOMA, a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules. With this method, we systematically revealed functional GO modules, i.e., groups of functionally similar GO terms, via an optimization model and then ranked them by enrichment scores. Our new method simplifies enrichment analysis results by reducing redundancy, thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results.
文摘This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.
基金supported by the National Defense PreResearch Foundation of China(51309030102)
文摘Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot get ful observability except the up-axis accelerometer. However, the ful skewed redundant SINS (RSINS) can not only enhance the reliability of the system, but also improve the accuracy of the system, such as the initial alignment. Firstly, the observability of the system state includes attitude errors and al the inertial sensors biases are analyzed with the global perspective method: any three gyroscopes and three accelerometers can be assembled into an independent subordinate SINS (sub-SINS);the system state can be uniquely confirmed by the coupling connec-tions of al the sub-SINSs;the attitude errors and random constant biases of al the inertial sensors are observable. However, the ran-dom noises of the inertial sensors are not taken into account in the above analyzing process. Secondly, the ful-observable Kalman filter which can be applied to the actual RSINS containing random noises is established; the system state includes the position, ve-locity, attitude errors of al the sub-SINSs and the random constant biases of the redundant inertial sensors. At last, the initial self-alignment process of a typical four-redundancy ful skewed RSINS is simulated: the horizontal attitudes (pitch, rol ) errors and yaw error can be exactly evaluated within 80 s and 100 s respectively, while the random constant biases of gyroscopes and accelero-meters can be precisely evaluated within 120 s. For the ful skewed RSINS, the self-alignment accuracy is greatly improved, mean-while the self-alignment time is widely shortened.
文摘The problems of current highly redundant flight control system are analyzed in this paper. Our study gives methods of utilizing other information to reduce physical components on the condition of meeting the reliability requirements for flight control system. The strategies presented in this paper mainly include information redundancy, multi-thread, time redundancy, geometry space redundancy, etc.. Analysis and simulation show these non-hardware based methods can reduce the requirement of system hardware level and thus reduce the system complexity, weight, space, costs and R&D (research and development) time.
文摘In this paper, one of the most classical statistical methods, Canonical Correlation Analysis (CCA) is applied to identify quantitatively the driving forces of landuse structure in Yulin Prefecture. The main analysis is carried out through the software SPSS with the data on the level of towns and townships in 1992. The results indicate that landuse structure is determined by comprehensive action of different factors. Landuse structure with rural characteristics is mainly determined by geographical factors such as the elevation, temperature and precipitation, while the landuse structure with urban characteristics is mainly determined by demographic and socioeconomic conditions. At the same time, tests were carried out through the canonical correlation coefficient and redundancy analysis.
基金supported by the National Basic Research Program of China (Grant Nos.2011CB302300, 2011CB302301)the National High-Technology Research and Development Program of China (Grant Nos.2009AA01A401,2009AA01A402)+1 种基金the National Natural Science Foundation of China (Grant Nos.60873028, 60933002, 61025008)the Changjiang Innovation Group of Education of China (Grant No.IRT0725)
文摘X-Code is one of the most important redundant array of independent disk (RAID)-6 codes which are capable of tolerating double disk failures. However, the code length of X-Code is restricted to be a prime number, and such code length restriction of X-Code limits its usage in the real storage systems. Moreover, as a vertical RAID-6 code, X-Code can not be extended easily to an arbitrary code length like horizontal RAID-6 codes. In this paper, a novel and efficient code shortening algorithm for X-Code is proposed to extend X-Code to an arbitrary length. It can be further proved that the code shortening algorithm maintains the maximum-distance-separable (MDS) property of X-Code, and namely, the shortened X-Code is still MDS code with the optimal space efficiency. In the context of the shortening algorithm for X-Code, an in-depth performance analysis on X-Code at consecutive code lengths is conducted, and the impacts of the code shortening algorithm on the performance of X-Code in various performance metrics are revealed.
基金supported by the National Natural Science Foundation of China(Grant No.61309005)the Basic and Frontier Research Program of Chongqing(Grant No.cstc2014jcyj A40015)
文摘Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.
文摘The paper in the introductory part reviews various definitions and interpretations of structural redundancy in mechanics. The study focuses on the general structural redundancy of systems after sequences of component failures followed by possible load redistributions. The second section briefly summarizes the Event Oriented System Analysis and structural redundancy in terms of the conditional probabilistic entropy. Mechanical responses to adverse loads in this approach are represented by random operational and failure events in the lifetime. The general redundancy measure in the third section of the paper employs the information entropy and goes beyond existing formulations since it includes all functional modes in service. The paper continues with a summary of traditional redundancy indices. In addition, it proposes an alternative redundancy index that accounts for the transition to secondary functional level in case of failures of primary components. The example of a ship structure illustrates the usage of the conditional entropy of subsystems of operational events and compares it to the traditional and newly proposed redundancy indices. The study at the end investigates how to enhance the safety of structures by using the redundancy based design.
基金Supported by National Natural Science Foundation of China(Grant No.51875499).
文摘The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getting intersection and union to complete type synthesis.The number of redundant parallel mechanisms obtained by these two methods is limited.In this paper,based on Grassmann line geometry and Atlas method,a novel and effective method for type synthesis of redundant actuated parallel mechanisms(PMs)with closed-loop units is proposed.Firstly,the degree of freedom(DOF)and constraint line graph of the moving platform are determined successively,and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph,and a branch constraint allocation scheme is formulated based on the allocation criteria.Secondly,a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units.Finally,the branch chains that meet the requirements of branch chains configuration criteria and F&C(degree of freedom&constraint)line graph are assembled.In this paper,two types of 2 rotational and 1 translational(2R1T)redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational(2T1R)redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples,and 238,92 and 15 new configurations were synthesized.All the mechanisms contain closed-loop units,and the mechanisms and the actuators both have good symmetry.Therefore,all the mechanisms have excellent comprehensive performance,in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled.The instantaneous analysis shows that all mechanisms are not instantaneous,which proves the feasibility and practicability of the method.
文摘A complex number mode analysis approach is proposed for vibration reducing of structural flexible redundant manipulators by utilizing self motion. In the proposed approach, the self motion is evaluated to nullify the modal exciting force of flexural motion, and the approach can be freely used when the degree of freedom of flexural motion is much greater than the available degree of reundancy. The availability and effectiveness of the proposed approach are demonstrated through numerical simulation with a four link spatial robotic manipulator possessing an end flexible link.
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.