期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Self-repairing functionality and corrosion resistance of in-situ Mg-Al LDH film on Al-alloyed AZ31 surface 被引量:1
1
作者 Yi-Xing Zhu Guang-Ling Song Peng-Peng Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1567-1579,共13页
A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s... A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys. 展开更多
关键词 LDH film Surface alloying Corrosion resistance self-repairing
下载PDF
Recent progress in self-repairing coatings for corrosion protection on magnesium alloys and perspective of porous solids as novel carrier and barrier
2
作者 Yajie Yang Yufei Wang +5 位作者 Mei-Xuan Li Tianshuai Wang Dawei Wang Cheng Wang Min Zha Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3585-3608,共24页
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti... Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions. 展开更多
关键词 Mg alloys COATINGS self-repairing Corrosion protection Porous solids
下载PDF
Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field
3
作者 Houyan Cheng Peng Liu +3 位作者 Yuntao Cui Ru Ya Yuxiang Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1126-1146,共21页
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t... Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided. 展开更多
关键词 photoelectrochemical water splitting bulk built-in electric field cation intercalation charge separation and transfer
下载PDF
Emerging Trends in Damage Tolerance Assessment:A Review of Smart Materials and Self-Repairable Structures
4
作者 Ali Akbar Firoozi Ali Asghar Firoozi 《Structural Durability & Health Monitoring》 EI 2024年第1期1-18,共18页
The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both tradition... The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both traditional and innovative methodologies employed in damage tolerance assessment.After a detailed exploration of damage tolerance concepts and their historical progression,the review juxtaposes the proven techniques of damage assessment with the cutting-edge innovations brought about by smart materials and self-repairable structures.The subsequent sections delve into the synergistic integration of smart materials with self-repairable structures,marking a pivotal stride in damage tolerance by establishing an autonomous system for immediate damage identification and self-repair.This holistic approach broadens the applicability of these technologies across diverse sectors yet brings forth unique challenges demanding further innovation and research.Additionally,the review examines future prospects that combine advanced manufacturing processes with data-centric methodologies,amplifying the capabilities of these‘intelligent’structures.The review culminates by highlighting the transformative potential of this union between smart materials and self-repairable structures,promoting a sustainable and efficient engineering paradigm. 展开更多
关键词 Damage tolerance smart materials self-repairable structures structural health monitoring SYNERGY autonomous system advanced manufacturing data-driven methodologies
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
5
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure built-in electric field
下载PDF
Bimetallic selenide heterostructure with directional built-in electricfield confined in N-doped carbon nanofibers for superior sodium storage with ultralong lifespan
6
作者 Junying Weng Degui Zou +5 位作者 Wenyong Yuan Pengfei Zhou Minghui Ding Jin Zhou Hailin Cong Fangyi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期407-416,共10页
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u... Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs. 展开更多
关键词 CoSe_(2)/NiSe_(2) heterostructure built-in electric-field Rate capability Ultralong lifespan Sodium ion batteries
下载PDF
Interfacial built-in electric field and crosslinking pathways enabling WS_(2)/Ti_(3)C_(2)T_(x) heterojunction with robust sodium storage at low temperature
7
作者 Jiabao Li Shaocong Tang +6 位作者 Jingjing Hao Quan Yuan Tianyi Wang Likun Pan Jinliang Li Shenbo Yang Chengyin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期635-645,I0014,共12页
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch... Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained. 展开更多
关键词 WS_(2)/Ti_(3)C_(2)T_(x)heterojunction built-in electric field Ion reservoir Reaction kinetics Sodium storage performance at low temperature
下载PDF
BOARD-LEVEL BUILT-IN SELF-REPAIR METHOD OF RAM 被引量:1
8
作者 DOU Yanjie Zhan Huiqin +1 位作者 Chen Yakun Shang Hongliang 《Journal of Electronics(China)》 2012年第1期128-131,共4页
This paper describes the method of built-in self-repairing of RAM on board, designs hardware circuit, and logic for the RAM's faults self-repairing system based on FPGA. The key technology is that it utilizes FPGA... This paper describes the method of built-in self-repairing of RAM on board, designs hardware circuit, and logic for the RAM's faults self-repairing system based on FPGA. The key technology is that it utilizes FPGA to test RAM according to some algorithm to find out failure memory units and replace the faulty units with FPGA. Then it can build a memory that has no fault concern to external controller, and realizes the logic binding between external controller and RAM. Micro Controller Unit (MCU) can operate external RAM correctly even if RAM has some fault address units. Conventional MCS-51 is used to simulate the operation of MCU operating external memory. Simulation shows FPGA can complete the faulty address units' mapping and MCU can normally read and write external RAM. This design realizes the RAM's built-in self-repairing on board. 展开更多
关键词 RAM testing built-in self-repairing Faulty address mapping Function test
下载PDF
Self-Repairing Membranes for Inflatable Structures Inspired by a Rapid Wound Sealing Process of Climbing Plants 被引量:2
9
作者 Markus Rampf Olga Speck +1 位作者 Thomas Speck Rolf H. Luchsinger 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第3期242-250,共9页
A new self-repairing membrane for inflatable light weight structures such as rubber boats or Tensairity constructions is presented. Inspired by rapid self-sealing processes in plants, a thin soft cellular polyurethane... A new self-repairing membrane for inflatable light weight structures such as rubber boats or Tensairity constructions is presented. Inspired by rapid self-sealing processes in plants, a thin soft cellular polyurethane foam coating is applied on the inside of a fabric substrate, which closes the fissure if the membrane is punctured with a spike. Experimental tests are carried out with a purpose built setup by measuring the air mass flow through a leak in a damaged membrane sample. It is shown that the weight per unit area of the self-repairing foam as well as the curing of the two component PU-foam under an overpressure influence the repair efficiency. Curing the foam under overpressure affects the relative density as well as the microstructure of the foam coatings. Maximal median repair efficiencies of 0.999 have been obtained with 0.16 g.cm 2 foam cured at 1 bar overpressure. These results suggest that the bio-inspired technique has the potential to extend the functional integrity of injured inflatable structures dramatically. 展开更多
关键词 self-repair SELF-HEALING biomimetics inflatable structures puncture resistance PU foam coating
下载PDF
New robust fault-tolerant controller for self-repairing flight control systems 被引量:1
10
作者 Zhang Ren Wei Wang Zhen Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期77-82,共6页
A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the origi... A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example. 展开更多
关键词 robust control self-repairing flight control nonlinear dynamic control extended state observer compensator.
下载PDF
Friction-reducing,Anti-wear and Self-repairing Properties of Sulfonated Graphene 被引量:2
11
作者 付秀丽 WANG Yong +1 位作者 PAN Yongzhi WANG Xiangyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期272-277,共6页
The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The micro... The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The microscopic morphology, elemental composition, and self-repairing properties were observed and analyzed by using scanning electronic microscopy(SEM), X-ray diffraction(XRD) and digital microscopy. The relationships among sulfonated graphene ethanol solution concentration, friction coefficient, and abrasion loss were revealed. It was found that the optimal concentration of ethanol solution with the addition of sulfonated graphene was 0.15g/m L and the coefficient of friction was only 0.105 under certain condition. Then the stable chemical properties and good anti-corrosion properties of the metal-graphene layer were further confirmed using salt spray corrosion test. In summary, sulfonated graphene can be used as a new kind of self repairing additive, and it has excellent wear-resistant and self-repairing performances. 展开更多
关键词 sulfonated graphene anti-wear self-repairing GCr15
下载PDF
On the Survivability of Self-repairing Control System for a Hybrid Underwater Vehicle
12
作者 Biao Wang Chao Wu Tong Ge 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第1期32-42,共11页
A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SR... A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SRCS) has been designed. It consists of two basic technologies,fault diagnosis and isolation( FDI) and reconfigurable control. For FDI,a model-based hierarchical fault diagnosis system is designed for the HROV. Then,control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies,it can obtain the fundamental frame of SRCS for the HROV. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes,an assessment of the HROV's survivability is vitally needed before it enters operational service. This paper presents a new definition of survivability for underwater vehicles and develops a simple survivability model for the SRCS. As a result of survivability assessment for the SRCS,we are able to figure out the survivability of SRCS and make further optimization about it. The methodology developed herein is also applicable to other types of underwater vehicles. 展开更多
关键词 SURVIVABILITY self-repairing HROV full ocean depth control system
下载PDF
Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries 被引量:1
13
作者 Weiming Xiong Jiande Lin +6 位作者 Huiqun Wang Sha Li Junhao Wang Yuxiang Mao Xiao Zhan De-Yin Wu Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期492-501,I0011,共11页
The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior ele... The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics. 展开更多
关键词 Lithium-sulfur battery MnS-MoS_(2)heterojunction built-in electric field Sulfur reaction kinetics High sulfur loading
下载PDF
Optimally arranged TiO_(2)@MoS_(2) heterostructures with effectively induced built-in electric field for high-performance lithium-sulfur batteries 被引量:1
14
作者 Jeongyoub Lee Changhoon Choi +12 位作者 Jung Been Park Seungho Yu Jinho Ha Hyungsoo Lee Gyumin Jang Young Sun Park Juwon Yun Hayoung Im Subin Moon Soobin Lee Jung-Il Choi Dong-Wan Kim Jooho Moon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期496-508,I0012,共14页
To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a st... To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect TiO_(2)-MoS_(2)heterostructure engineering built-in electric field Multifunctional interlayers
下载PDF
Design of Rotor Magnetic Barrier Structure of Built-in Permanent Magnet Motor Based on Taguchi Method
15
作者 Shengnan Wu Xianwen Pang +1 位作者 Wenming Tong Yingcong Yao 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期193-201,共9页
In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor s... In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple. 展开更多
关键词 built-in permanent magnet synchronous motor Magnetic barrier Taguchi method Equivalent magnetic network model Finite element analysis
下载PDF
Plants as concept generators for biomimetic light-weight structures with variable stiffness and self-repair mechanisms 被引量:10
16
作者 Thomas Speck Tom Masselter +3 位作者 Bettina Prüm Olga Speck Rolf Luchsinger Siegfried Fink 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第4期199-205,共7页
Plants possess many structural and functional properties that have a high potential to serve as concept generators for the production of biomimetic technical materials and structures. We present data on two features... Plants possess many structural and functional properties that have a high potential to serve as concept generators for the production of biomimetic technical materials and structures. We present data on two features of plants (variable stiffness due to pressure changes in cellular structures and rapid self-repair functions) that may be used as models for biomimetic projects. 展开更多
关键词 BIONICS biomimetics self-repair pneumatic structures Tensairity Aristolochia 1
下载PDF
Built-in electric field effect on cyclotron mass of magnetopolarons in a wurtzite In_xGa_(1-x)N/GaN quantum well 被引量:2
17
作者 赵凤岐 咏梅 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期396-402,共7页
The cyclotron mass of magnetopolarons in wurtzite InxGa1-xN/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method. The effects of the built-in electric field... The cyclotron mass of magnetopolarons in wurtzite InxGa1-xN/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method. The effects of the built-in electric field and different phonon modes including interface, confined and half-space phonon modes are considered in our calculation. The results for a zinc-blende quantum well are also given for comparison. It is found that the main contribution to the transition energy comes from half-space and interface phonon modes when the well width is very small while the confined modes play a more important role in a wider well due to the location of the electron wave function. As the well width increases, the cyclotron mass of magnetopolarons first increases to a maximum and then decreases either with or without the built-in electric field in the wurtzite structure and the built-in electric field slightly reduces the cyclotron mass. The variation of cyclotron mass in a zinc-blende structure is similar to that in a wurtzite structure. With the increase of external magnetic field, the cyclotron mass of polarons almost linearly increases. The cyclotron frequency of magnetopolarons is also discussed. 展开更多
关键词 wurtzite quantum well built-in electric field MAGNETOPOLARON cyclotron mass
下载PDF
Modeling and Simulation for Complex Repairable System with Built-in Test Equipment 被引量:1
18
作者 吕学志 于永利 +1 位作者 张柳 任帆 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第2期119-125,共7页
In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the ... In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the influences of different built-in test equipments,maintenance time and error probabilities on the system usability are evaluated.The simulation results showthat they effect on the system differently.The simulation method of complex system based on Simulink provides a technique approach to research the effects of BITon the system and select BITand test strategy. 展开更多
关键词 computer application complex system built-in test equipment SIMULINK
下载PDF
Elimination-Evolution Self-repair Method for Bio-inspired Electronic System
19
作者 朱赛 蔡金燕 +1 位作者 孟亚峰 李丹阳 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期261-265,共5页
The existing self-repair methods,evolvable hardware and embryonic electronics( embryonics) are analyzed. Based on the advantages and disadvantages of the existing self-repair methods,a novel self-repair method named e... The existing self-repair methods,evolvable hardware and embryonic electronics( embryonics) are analyzed. Based on the advantages and disadvantages of the existing self-repair methods,a novel self-repair method named elimination-evolution self-repair method is proposed. The system can be repaired through elimination in real time and evolved to optimize the allocation of system resources with this method. The proposed self-repair method not only ensures the speed of the system's self-repair,but also makes full use of system resources to improve the system's self-repair capacity and provides a new self-repair approach for bio-inspired electronic system. In the end,the advantages of the proposed eliminationevolution self-repair method are verified through a simulation experiment. 展开更多
关键词 bio-inspired electronic sytem embryonics evolvable hardware self-repair elimination-evolution self-repair
下载PDF
Modeling and Control Strategy of Built-in Skin Effect Electric Tracing System
20
作者 Li Ding Jiasheng Zhang Hongchang Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第11期213-229,共17页
In order to ensure the safety of fluid flow in deep-water submarine pipelines,a safe and energy-saving built-in skin effect electric heat tracing technology was adopted as the thermal management strategy.The magnetic ... In order to ensure the safety of fluid flow in deep-water submarine pipelines,a safe and energy-saving built-in skin effect electric heat tracing technology was adopted as the thermal management strategy.The magnetic field distribution of built-in skin effect heating system is analyzed based on the mechanism of built-in skin effect heating system,so as to obtain the equivalent circuit model of built-in skin effect electric heating system.Meanwhile,heating power is introduced as an intermediate variable to establish the relationship between power supply frequency and built-in skin effect heating temperature.Aiming at the skin effect electric heating system,an Active Disturbance Rejection Control(ADRC)method is proposed macroscopically based on Hammerstein model.Firstly,the parameters of Hammerstein model are identified and optimized using the auxiliary model and standard particle swarm optimization algorithm.Then,the ADRC controller of linear link is designed,and the required heating temperature is used to solve the intermediate variable heating power.Finally,inversion calculation is applied in the nonlinear link to solve the required power frequency,so as to achieve the purpose of efficient heating and verify the feasibility and effectiveness of control strategy through simulation. 展开更多
关键词 built-in ELECTRIC heat TRACING system HAMMERSTEIN model ADRC temperature control.
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部