期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Dynamic monitoring of soil bulk density and infiltration rate during coal mining in sandy land with different vegetation 被引量:9
1
作者 Yinli Bi Hui Zou Chenwei Zhu 《International Journal of Coal Science & Technology》 EI CAS 2014年第2期198-206,共9页
To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method a... To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method and double-ring infiltrometer.Specifically,variations in soil bulk density and water infiltration rate and the influences of coal mining and vegetation type on the properties during different subsidence stages were studied at the Shendong Bulianta mine.The results showed that,in the period before mining,soil bulk density occurred in the order A.ordosica>P.simonii>S.psammophila,with a negative correlation between the initial infiltration rate and steady infiltration rate being observed.In the period during mining and 3 months after mining,there were no significant differences in soil bulk density and water infiltration rate among vegetation types.At 1 year after mining,the soil bulk density occurred in the order A.ordosica>S.psammophila>P.simonii,having a negative correlation with the steady infiltration rate.The water infiltration depths of the S.psammophila,P.simonii and A.ordosica were 50,60,and 30 cm,respectively.The infiltration characters were simulated by the Kostiakov equations,and the simulated and experimental results were consistent.Linear regression revealed that vegetation types and soil bulk density had significant effects on soil initial infiltration rate during the four study periods,and the infiltration rate of the period 1 year after mining was mainly influenced by the soil bulk density of the period before mining.The results indicated that vegetation types had significant effects on soil bulk density,and that the tree-shrub-grass mode was better than one single plantation for water conversation and vegetation recovery in sandy land subjected to mining. 展开更多
关键词 Soil bulk density Soil infiltration rate Sandy land Vegetation type
下载PDF
A brief introduction to recent applications of several sediment-analysis techniques in palaeolimnological studies-dry bulk density and water content, mineral magnetism, carbonate content, and content of total organic carbon,nitrogen content and carbon/ni 被引量:2
2
作者 WANG Hong-ya (Dept. of Urban and Environmental Sciences, Peking University, Beijing 100871, China Geophysical Laboratory, Dot. of Earth Sciences, University of Aarhus, Finlandsgade 8. DK- 8200, Aarhus N, Denmark) 《Journal of Geographical Sciences》 SCIE CSCD 2000年第1期28-36,共9页
Determination of dry bulk density and water content measurement of magnetic susceptibility (x) and saturation isothermal remanent magnetization (SIRM), determination of carbonate content, and determination of total o... Determination of dry bulk density and water content measurement of magnetic susceptibility (x) and saturation isothermal remanent magnetization (SIRM), determination of carbonate content, and determination of total organic carbon (TOC) content nitrogen content (N%) and carbon/nitrogen (C/N) ratio are some of the techniques which have been widely applied to lacustrine-sediment analyses. The techniques,complemented by others, are usually useful for revealing characteristics of lacustrine-sediments and thus for postulating hydrological regimes in the lake and environmental conditions and human activity around it in palaeolimnological studies. A very brief review is presented on recent applications of these techniques in palaeolimnological work with English literatures published mainly since 1985 and focus given on interpretations of results of these analyses related to palaeoenvironmental reconstructions. Low dry bulk density and high water content often imply relatively warm and wet conditions. High X and SIRM are usually resulted from reduced dilutions in the lake and intensified erosions on its catchment. both of which can be in turn attributed to environmental changes. While variations in patterns of X and SIRM may give further insight on mineral magnetism and thus implications on environmental conditions. Increased carbonate content seems likely to associate to warm and dry conditions.Increased TOC content is virtually used as one of indicators of warm and wet conditions and variations in C/N ratio may hint variations in relative contributions of different sources, aquatic and terrestrial, to the total organic matter in lake sediments and hence to lake-level fluctuations and climate changes. 展开更多
关键词 dry bulk density and water content mineral magnetism carbonate content. total organic carbon content nitrogen content carbon/nitrogen ratio
下载PDF
Comparing Two Methods for Measuring Soil Bulk Density and Moisture Content 被引量:1
3
作者 Jalal D. Jabro William B. Stevens William M. Iversen 《Open Journal of Soil Science》 2020年第6期233-243,共11页
<span style="font-family:Verdana;">Soil bulk density and moisture content are dynamic properties that vary with changes in soil and field conditions and have many agricultural, hydrological and environ... <span style="font-family:Verdana;">Soil bulk density and moisture content are dynamic properties that vary with changes in soil and field conditions and have many agricultural, hydrological and environmental implications. The main objective of this study was to compare between a soil core sampling method (core) and the CPN MC-3 Elite<span style="white-space:nowrap;"><sup>TM</sup></span> nuclear gauge method (radiation) for measuring bulk density (<span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"></span><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span>) and volumetric moisture content (<span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>θ<span style="font-size:10.9091px;">v</span></i></span></span></i></span>) in a clay loam soil. Soil <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span> and <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"></span><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>θ<span style="font-size:10.9091px;">v</span></i></span></span></i></span> measurements were determined using the core and radiation methods at 0 - 10 and 10 - 20 cm soil depths. The mean values of soil <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span> obtained using the core method (1.454, 1.492 g<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#f7f7f7;"="">·</span>cm<span style="white-space:nowrap;"><sup>&minus;3</sup></span>) were greater than those obtained using the radiation method (1.343, 1.476 g<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#f7f7f7;"="">·</span>cm<span style="white-space:nowrap;"><sup>&minus;3</sup></span>) at the 0 - 10 and 10 - 20 cm depths, respectively. Mean <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span> and <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>θ<span style="font-size:10.9091px;">v</span></i></span></span></i></span> values averaged across both depths (referred to as the 0 - 20 cm depth) measured by the core method were 4.47% and 22.74% greater, respectively, than those obtained by the radiation method. The coefficients of variation (CV) of soil <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"></span><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span> values measured by the core method were lower than the CV values of those measured by the radiation method at both depths;however, the CV’s of <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span> values for both methods were larger at the 0 - 10 cm depth than those measured at the 10 - 20 cm depth. Similarly, the CV values of soil <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>θ<sub>v</sub></i></span></span></i></span> values measured by the core method were lower than the CV values of those measured by the radiation method at both depths. There were significant differences between two methods in terms of <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span> and <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>θ<sub>v</sub></i></span></span></i></span>, with the core method generating greater values than the radiation method at the 0 - 20 cm depth. These discrepancies between the two methods could have resulted from soil compaction and soil disturbance caused by the core and radiation techniques, respectively, as well as by other sources of error. Nevertheless, the core sampling method is considered the most common one for measuring <span style="white-space:nowrap;"><i><span style="font-family:Verdana;white-space:normal;"><span style="white-space:nowrap;"><i>ρ<sub>B</sub></i></span></span></i></span> for many agricultural, hydrological and environmental studies in most soils.</span> 展开更多
关键词 SOIL bulk density Moisture Content Core Method Radiation Method
下载PDF
Monitoring of Soil Bulk Density in Context with Its Small-Scale Spatial Heterogeneity 被引量:1
4
作者 Miloš Širáň Jarmila Makovníková 《Journal of Geoscience and Environment Protection》 2021年第5期138-151,共14页
The main aim of soil monitoring system is to obtain the knowledge of the most current state and development of soil properties according to concrete threats to soil. To determine the significant changes of soil proper... The main aim of soil monitoring system is to obtain the knowledge of the most current state and development of soil properties according to concrete threats to soil. To determine the significant changes of soil properties in time, it is important to know spatial variability of concrete soil parameter for concrete site. Only those time changes of the soil parameter are significant, which exceed its spatial variability at the site. The main aim of the study has been focused on the evaluation of small-scale site heterogeneity of equilibrium soil bulk density and the integration of impact of this heterogeneity in evaluation of degradation process of soil compaction in time. As site variation coefficients have considerably varied at standard sampling with five repetitions during monitoring period, one-time detail spatial variability mapping of soil bulk density was realized at 17 repetitions on five selected monitoring sites with different soil type, texture and use. This increase in the number of sampling points helped us to specify and stabilize the values of variation coefficients (between minimum and maximum by standard sampling) as well as the extent of confidence intervals. Standard deviations at the chosen monitoring sites moved from 0.039 to 0.118 g·cm<sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in topsoil and from 0.031 to 0.067 g·cm</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in subsoil and expressed as variation coefficient 2.9% - 9.2% and 2.0% - 4.9%, respectively. The intervals of significant time changes of soil bulk density for the sites and depths were determined on the base of its site confidence interval (95%) and uncertainty rate of its measure methodology. The time changes of bulk density values between single year-to-year sampling were overlapped by this interval of significant changes to obtain significant bulk density changes in time. This method allowed us to distinguish significant time changes in soil bulk density from insignificant ones. The bulk density value changes on the monitoring sites were significant in the range of six to nine years within observed period 2002-2014 in both depths.</span> 展开更多
关键词 Soil Monitoring Soil bulk density SPATIAL Site and Time Variability Significant Time Change
下载PDF
Variation of soil organic carbon and bulk density during afforestation regulates soil hydraulic properties
5
作者 GU Feng CHEN Xue-jiao +2 位作者 SU Zheng-an ZHANG Xin-bao ZHOU Ming-hua 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2322-2332,共11页
Grain to Green program on arable land has been conducted for decades in semi-arid regions of North China.However,it remains uncertain how afforestation practices affect soil hydraulic properties(SHP).Two afforestation... Grain to Green program on arable land has been conducted for decades in semi-arid regions of North China.However,it remains uncertain how afforestation practices affect soil hydraulic properties(SHP).Two afforestation types,i.e.shrubland(SL)and woodland(WL),and the adjacent cropland(CL)were investigated to determine afforestation effects on SHP in this area.Disturbed and undisturbed soil cores were collected in three experimental sites.Soil field capacity(FC),wilting point(WP),and available water capacity(AWC)increased in SL compared to the CL.Soil saturated water content,however,decreased significantly in both SL and WL.Correlation and redundancy analysis identified that bulk density(BD)and soil organic carbon(SOC)were the main factors regulating SHP across different land uses.Lower saturated water contents in afforestation sites were likely driven by the higher BD,compared to the adjacent cropland.FC,WP,and AWC were positively correlated to SOC content.While afforestation may not increase the saturated water content of a landscape,our results indicate that it can improve soil water retention and could be an effective practice for soil and water conservation. 展开更多
关键词 AFFORESTATION bulk density Field capacity Soil hydraulic properties Soil organic carbon Soil water retention curve
下载PDF
Dense Shaped Refractory Products——Determination of Bulk Density, Apparent Porosity and True Porosity
6
《China's Refractories》 CAS 2006年第1期33-35,共3页
1 Scope This standard specifies the definition, prineiple, apparatus and materials, procedure, expression of resuits and test report of determination of bulk density, apparent porosity and true porosity of dense shap... 1 Scope This standard specifies the definition, prineiple, apparatus and materials, procedure, expression of resuits and test report of determination of bulk density, apparent porosity and true porosity of dense shaped refractory products. 展开更多
关键词 test TRUE Apparent Porosity and True Porosity Dense Shaped Refractory Products Determination of bulk density
下载PDF
Shaped Insulating Refractory Products——Determination of Bulk Density and True Porosity
7
《China's Refractories》 CAS 2006年第1期35-37,共3页
1 Scope This standard specifies a method for the determination of the bulk density and true porosity of shaped insulating refractory products.
关键词 TRUE Shaped Insulating Refractory Products Determination of bulk density and True Porosity
下载PDF
Bulk Density in Jack Bean’s Development Grown in Cerrado Oxisol
8
作者 Edna Maria Bonfim-Silva Juliana Terezinha Sasso Paludo +1 位作者 Tonny José Araújo da Silva Salomao Lima Guimaraes 《American Journal of Plant Sciences》 2015年第9期1349-1360,共12页
The use of cover plants promotes the recycling of nutrients and the increase in organic mass, and minimizes the effects of erosion. The objective was to evaluate the effect of bulk density in the development of jack b... The use of cover plants promotes the recycling of nutrients and the increase in organic mass, and minimizes the effects of erosion. The objective was to evaluate the effect of bulk density in the development of jack bean (Canavalia ensiformis) in Cerrado Oxisol. The experiment was conducted in a greenhouse at the Federal University of Mato Grosso, Rondonópolis-MT, in the period from June to September 2013. Oxisol was used from a Cerrado reserve area, collected at 0 - 0.20 m depth. The experimental design was completely randomized, corresponding to bulk density levels (1.0, 1.2, 1.4, 1.6 and 1.8 Mg&middotm-3), and five replications. The experimental plot consisted of three PVC rings (polyvinyl chloride) with 150 mm internal diameter, 300 mm total height, where the upper and lower rings of pots were filled with 1.0 Mg&middotm-3 density soil and intermediaries according to bulk density treatments. The results were submitted to variance analysis and, when significant, to regression analysis, both with a 5% probability, using SISVAR software. At 60 days after germination, number of leaves, stem diameter, plant height, dry mass of leaves, stem dry mass, dry mass of roots, dry mass of nodules, number of nodules and chlorophyll index (SPAD index) were evaluated. The increase in bulk density negatively influences the development of jack bean, showing little efficiency as a decompacting plant in Cerrado Oxisol. 展开更多
关键词 Canavalia ensiformis bulk density Cover Crops
下载PDF
Effects of moisture content and dry bulk density on the thermal conductivity of compacted backfill soil 被引量:2
9
作者 Yu-hao WU Yan-hao FENG +3 位作者 Li-wu FAN Qing WANG Xin SONG Zi-tao YU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第8期610-620,共11页
Soil backfilling and compaction are often involved in urban construction projects like the burying of power cables.The thermal conductance of backfill soil is therefore of great interest.To investigate the thermal con... Soil backfilling and compaction are often involved in urban construction projects like the burying of power cables.The thermal conductance of backfill soil is therefore of great interest.To investigate the thermal conductivity variation of compacted backfill soil,10 typical soils sampled in Zhejiang Province of China with moisture contents of 0%–25%were fully compacted according to the Proctor compaction test method and then subjected to thermal conductivity measurement using the thermal probe method at 20℃.The particle size distribution and the chemical composition of the soil samples were characterized to analyze their effects on thermal conductivity.The results showed that the maximum thermal conductivity of fully compacted soils generally exceeds 1.9 W/(m·K)and is 20%–50%higher than that of uncompacted soils.With increasing moisture content,soil thermal conductivity and dry bulk density first increase and then remain unchanged or decrease slowly;the critical moisture content is greater than 20%in most cases.Overall,the critical moisture content of soils with large particle size is lower than that of those with small particle size.Quartz has the highest thermal conductivity in the soil solid phase,and the mass percentage of quartz for most soils in this study is more than 50%,while that for yellow soil is less than 30%,which leads to the thermal conductivity of the former being nearly twice as great as that of the latter in most circumstances.Based on regression analysis,with moisture content and dry bulk density as the independent parameters,the prediction formulae for the thermal conductivity of two categories of compacted backfill soils are proposed for practical applications. 展开更多
关键词 Backfill soil COMPACTION Thermal conductivity Moisture content Dry bulk density
原文传递
Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic 被引量:1
10
作者 M.F.Hossain W.Chen Yu Zhang 《Information Processing in Agriculture》 EI 2015年第3期183-190,共8页
Bulk density is an indicator of soil compaction subject to anthropogenic impact,essential to the interpretation of any nutrient budgets,especially to perform carbon inventories.It is so expensive to measure bulk densi... Bulk density is an indicator of soil compaction subject to anthropogenic impact,essential to the interpretation of any nutrient budgets,especially to perform carbon inventories.It is so expensive to measure bulk density in arctic/sub-arctic and there are relatively very few field measurements are available.Therefore,to establish a bulk density and SOC empirical relationship in Canada’s arctic and sub-arctic ecosystems,compiled all the bulk density and SOC measurements that are available in Northern Canada.In addition an attempt has been made for bulk density and SOC field measurement in Yellowknife and Lupin,to develop an empirical relationship for Canada’s arctic and sub-arctic.Relationships between bulk density(BD)and soil organic carbon(SOC)for mineral soil and organic soils(0–100 cm depth)were described by exponential functions.The best fit model,predictive bulk density(BDp),for mineral soil,(BDp=0.701+0.952 exp(0.29 SOC),n=702,R2=0.99);for organic soil(BDp=0.074+2.632 exp(0.076 SOC),n=674,R2=0.93).Different soil horizons have different bulk densities and may require different predictive equations,therefore,developed predictive best fit exponential equation for both mineral and organic soils together(BDp=0.071+1.322 exp(0.071 SOC),n=1376,R2=0.984),where X is a dummy variable with a value of 0 for surface peat(0–25 cm depth)and 1 for subsurface peat(25–175 cm).We recommend using the soil organic carbon density approach to estimate BD from SOC because it allows BD to be predicted without significant bias. 展开更多
关键词 bulk density Mineral and organic soils Canada’s arctic and sub-arctic
原文传递
Computer programming for prediction of soil bulk density effect on trencher design parameters
11
作者 Mohamed Hassan Dahab Moayed Mohamed balal 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2011年第4期42-49,共8页
A computer program was developed in C++language to predict the effect of soil bulk density on draft force on bottoms,share thickness,stresses distribution and maximum deflection on standards,bending stresses distribut... A computer program was developed in C++language to predict the effect of soil bulk density on draft force on bottoms,share thickness,stresses distribution and maximum deflection on standards,bending stresses distribution on side plates,diameter of shear pins,and tensile stress on hitch bar.It was found that,as soil bulk density increased,stresses distribution and maximum deflection on standards,bending stresses distribution on side plates,diameter of shear pins,and tensile stress on hitch bar increased.The diameter of shear pin should be larger to meet wide range of soil density. 展开更多
关键词 TRENCHER computer program SOIL draft force bulk density PREDICTION
原文传递
Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells
12
作者 刘倩 何志群 +3 位作者 梁春军 赵勇 肖维康 李丹 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第5期103-106,共4页
Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the dop... Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs. 展开更多
关键词 HT Effect of Crystallinity of Fullerene Derivatives on Doping density in the Organic bulk Heterojunction Layer in Polymer Solar Cells DIO
下载PDF
Parkland trees on smallholder farms ameliorate soil physical-chemical properties in the semi-arid area of Tigray,Ethiopia
13
作者 Selam LJALEM Emiru BIRHANE +1 位作者 Kassa TEKA Daniel H BERHE 《Journal of Arid Land》 SCIE CSCD 2024年第1期1-13,共13页
Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The A... Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The African birch(Anogeissus leiocarpa(DC.)Guill.&Perr.)and pink jacaranda(Stereospermum kunthianum Cham.)trees are the dominant species in the agroforestry parkland system in the drylands of Tigray,Ethiopia.Smallholder farmers highly value these trees for their multifunctional uses including timber,firewood,charcoal,medicine,etc.These trees also could improve soil fertility.However,the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agroecological systems.Hence,we selected twelve isolated trees,six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions.We divided the canopy cover of each tree into three radial distances:mid-canopy,canopy edge,and canopy gap(control).At each distance,we took soil samples from three different depths.We collected 216 soil samples(half disturbed and the other half undisturbed)from each canopy position and soil depth.Bulk density(BD),soil moisture content(SMC),soil organic carbon(SOC),total nitrogen(TN),available phosphorus(AP),available potassium(AK),p H,electrical conductivity(EC),and cation exchange capacity(CEC)were analysed.Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species,CEC under A.leiocarpus,and soil p H under S.kunthianum,all the studied soils were improved under both species canopy as compared with canopy gap.SMC,TN,AP,and AK under canopy of these trees were respectively 24.1%,11.1%,55.0%,and 9.3% higher than those soils under control.The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties.These two species were recommended in the drylands with similar agro-ecological systems. 展开更多
关键词 AGROFORESTRY bulk density carbon stock dispersed tree soil texture tree canopy
下载PDF
Effect of TiO_(2)Addition on Properties of Al_(2)O_(3)Ceramics Prepared by Digital Light Printing(DL.P)
14
作者 WANG Rui YANG Daoyuan +2 位作者 PAN Yarui YUAN Huiyu CUI Junyan 《China's Refractories》 CAS 2023年第1期35-39,共5页
Ceramic slurry of 78 mass%solid loading was prepared using photosensitive acrylic resin and dispersant SP-710 as the liquid phase,Al_(2)O_(3) powder(d50=2.38μm)and TiO_(2) powder additive as the solid phase.Alumina c... Ceramic slurry of 78 mass%solid loading was prepared using photosensitive acrylic resin and dispersant SP-710 as the liquid phase,Al_(2)O_(3) powder(d50=2.38μm)and TiO_(2) powder additive as the solid phase.Alumina ceramics were prepared by DLP,sintering for 4 h at 1450,1500,1550 or 1600℃,respectively.The effects of the TiO_(2) addition(0,1%,2%,3%and 5%,by mass)on the properties of the ceramics were studied.The results show that the addition of TiO_(2) can improve the sintering of Al_(2)O_(3) ceramics,significantly improve the densification,and reduce the sintering temperature.With the optimum TiO_(2) addition of 3%and the optimum sintering temperature of 1600℃,the obtained Al_(2)O_(3) ceramics have shrinkage of 15.7%,15.8%and 23.8%at the x axis,the y axis,and the z axis,respectively,the porosity of 2.4%,the bulk density of 3.74 g·cm-3 and the three-point bending strength of 251.1 MPa.Compared with the undoped alumina ceramics,the doped alumina ceramic has increased bulk density by 0.56 g·cm-3,decreased apparent porosity from 20.2%to 2.4%,and the three-point bending strength increases by 2.5 times.Therefore,the density and the strength of DLP prepared ceramics can be improved effectively by adding an appropriate amount of TiO_(2),and the performance of the DLP prepared ceramics is close to that of the pressed samples.Thus,it is hopeful to apply DLP in refractories field. 展开更多
关键词 digital light printing alumina ceramics STRENGTH bulk density sintering aid
下载PDF
Evaluation of Physicochemical Parameters of Biosorbents Produced from Groundnut Hull Using Microwave Assisted Irradiation Method
15
作者 Augustus Newton Ebelegi Newman Tonizibeze Elijah Jackson Godwin 《Open Journal of Physical Chemistry》 CAS 2023年第1期1-12,共12页
Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hul... Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hull (R-GH)]. The biosorbents were further characterized using physicochemical procedures (pH dependence, bulk density, surface area, ash content, and volatile matter, moisture content). The results show that HP-GH has pH = 8.9, W-GH pH = 8.4 and R-GH pH = 8.5 which is an indication that all the biosorbents have the appropriate pH values for the uptake of cationic species within aqueous systems. Surface area analysis revealed that HP-GH has the largest surface area (74.20 m<sup>2</sup>·g<sup>-1</sup>) while W-GH and R-GH have surface area values of 29.40 m<sup>2</sup>·g<sup>-1</sup> and 21.40 m<sup>2</sup>·g<sup>-1</sup> respectively. This suggests that modification of raw groundnut hull biomass with hydrogen peroxide possibly instigated delignification of the biomass which resulted in increased surface area for HP-GH. Results from Bulk density analysis also confirm the data obtained from surface area analysis. Accordingly, R-GH displayed the highest bulk density followed by W-GH with HP-GH showing the least bulk density. The variation in pH values among the biomass used in this study may be explained by the variation in their ash content as well because pH and ash content are positively correlated. Hence, HP-GH with a pH = 8.9 has high ash content (117.31%), W-GH with pH = 8.4 has 97.93% ash content and R-GH with pH = 8.5 has 94.26% ash content. Results from moisture content analysis show that HP-GH (99.95%), W-GH (99.97%) and R-GH (99.89%) may necessitate exposure of the biosorbents to moderate heat before use. The results obtained from this study suggest that modification of ground nut hull with either distilled water or Hydrogen peroxide by means of microwave irradiation improves physicochemical properties which may perhaps increase the adsorption capacity of the biomass. 展开更多
关键词 Agrowastes Characterization PHYSICOCHEMICAL bulk density Surface Area Volatile Matter Groundnut Hull Hydrogen Peroxide
下载PDF
Effects of Different Tillage Systems on Soil Properties,Root Growth,Grain Yield,and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China 被引量:27
16
作者 HUANG Gao-bao CHAI Qiang +1 位作者 FENG Fu-xue YU Ai-zhong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第8期1286-1296,共11页
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con... Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield. 展开更多
关键词 conservation tillage soil water storage bulk density water use efficiency winter wheat (Triticum aestivumL.) root system grain yield
下载PDF
Vertical distribution characteristics of soil organic carbon content in Caohai wetland ecosystem of Guizhou plateau, China 被引量:7
17
作者 Yunjie Wu Fengyou Wang Sixi Zhu 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期551-556,共6页
We selected four kinds of land use types from Caohai wetlands of Guizhou plateau(a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways o... We selected four kinds of land use types from Caohai wetlands of Guizhou plateau(a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways of land use, the organic carbon content of soil profiles and organic carbon density show the tendency of decreasing firstly and then increasing from top to bottom. With the increase of depth, the vertical difference becomes smaller first and then starts increasing. Land reclamation reduces the soil organic carbon content and density, changing its distribution structure in topsoil. The average content of organic carbon in Caohai wetlands are as follows: lake bed silt [ marsh wetland [ farmland [ woodland, the average organic carbon content of lake bed silt, marsh wetland,farmland and woodland are 16.40, 2.94, 1.81 and 1.08 %,respectively. Land reclamation reduces the organic carbon content of soil, therefore the conversion of cultivated lands to wetlands and the increase of forest coverage will help to fix the organic carbon in soil and increase its reserves. 展开更多
关键词 Land using pattern WETLANDS Soil organiccarbon Soil bulk density
下载PDF
Effect of Aggregate Gradation with Fuller Distribution on Properties of Sulphoaluminate Cement Concrete 被引量:3
18
作者 宫晨琛 ZHANG Jie +1 位作者 WANG Shoude LU Lingchao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期1029-1035,共7页
Experimental investigations on mechanical property and durability of sulphoaluminate cement concrete with aggregate gradations according to Fuller distribution are presented in this paper. Compressive strength, water ... Experimental investigations on mechanical property and durability of sulphoaluminate cement concrete with aggregate gradations according to Fuller distribution are presented in this paper. Compressive strength, water impermeability and resistance capability to sulfate attack of SACC have the same trend of concrete with fine aggregates of Fuller distribution gradation<concrete with coarse aggregates of Fuller distribution gradation<concrete with total aggregates of Fuller distribution gradation. The relationship between bulk density of aggregate and water penetration depth obeyed the second-order polynomial y=0.002x2-6.863 8x +5 862.3, and had a notable correlation R2=0.979 9. The sulphoaluminate cement concrete with total aggregate gradation with Fuller distribution for h=0.50 had the best resistance capability to sulfate attack. It was a second-order polynomial relationship between bulk density of aggregates and water penetration depth of y=0.002x2-6.863 8x+5 862.3 with R2=0.979 9, which indicated notable correlation. The fitting formula between bulk density of aggregates and sulfate resistance coefficient of SACC was y=0.000 5x+0.370 4 with R2=0.958 5. 展开更多
关键词 concrete aggregate Fuller distribution bulk density compressive strength water permeability resistance to sulfate attack
下载PDF
The main physical properties of planosol in maize(Zea mays L.) cultivation under different long-term reduced tillage practices in the Baltic region 被引量:2
19
作者 K?stutis Romaneckas Egidijus ?arauskis +2 位作者 Dovil? Avi?ienyt? Sidona Buragien? David Arney 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第7期1309-1320,共12页
The impact of sustainable reduced tillage (RT) on the physical properties of soil is well documented worldwide; however, there is no precise information about the influence of long-term RT or no-till (NT) on the s... The impact of sustainable reduced tillage (RT) on the physical properties of soil is well documented worldwide; however, there is no precise information about the influence of long-term RT or no-till (NT) on the soils at the boundary for grain maize-growing in the semi-humid subarctic climate conditions of the Baltic states, especially on the formation of a hard- ened upper soil layer (10-15 cm in depth) --"loosening hardpan". This study was carried out at the Research Station of Aleksandras Stulginskis University, Lithuania from 2009-2012. The investigations were based on a long-term (since 1988) field experiment. The aim of the investigation was to ascertain the influence of reduced primary tillage on the main soil's physical properties. This study examined soils that were deep ploughing (DP), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC), and no-till (NT). Reducing the tillage intensity to NT had no significant effect on the structural soil's composition; however, the stability of the structure of the 〉1 and 〉0.25 mm-size fractions was significantly higher in the non-reversibly tilled (DC, SC) and NT plots. The penetration resistance of the DP soils was less after primary tillage and wintering, and became similar to the NT plots at the end of the maize growth season. After primary tillage and wintering, the soil moisture content in the upper soil layer (0-5 cm depth) of the NT plots was 17-49 and 16-18% higher than that in the DP. Long-term reduction of primary tillage up to NT generally had no significant effect on the moisture content and soil bulk density of the 0-10 and 10-20 cm layers. The results showed that long-term RT stabilized the physical quality of soil. Less soil penetration resistance was established in the DP plots compared to both RT and NT, however, indicators of the formation of a uniform "loosening hardpan" layer were not found. It is summarized that long-term RT or NT systems stabilize, or may increase, the physical quality of soil in crop cultivation with low inter-row coverage potential (maize), and could be applied in semi-humid subarctic climate conditions as a good option to prevent soil degradation. 展开更多
关键词 bulk density MAIZE moisture content penetration resistance reduced tillage soil aggregation
下载PDF
Factors determining soil water heterogeneity on the Chinese Loess Plateau as based on an empirical mode decomposition method 被引量:2
20
作者 GONG Yidan XING Xuguang WANG Weihua 《Journal of Arid Land》 SCIE CSCD 2020年第3期462-472,共11页
Soil water is a critical resource,and as such is the focus of considerable physical research.Characterization of the distribution and spatial variability of soil water content(SWC)offers important agronomic and enviro... Soil water is a critical resource,and as such is the focus of considerable physical research.Characterization of the distribution and spatial variability of soil water content(SWC)offers important agronomic and environmental information.Estimation of non-stationary and non-linear SWC distribution at different scales is a research challenge.Based on this context,we performed a case study on the Chinese Loess Plateau,with objectives of investigating spatial variability of SWC and soil properties(i.e.,soil particle composition,organic matter and bulk density),and determining multi-scale correlations between SWC and soil properties.A total of 86 in situ sampling sites were selected and 516 soil samples(0–60 cm depth with an interval of 10 cm)were collected in May and June of 2019 along the Yangling-Wugong-Qianxian transect,with a length of 25.5 km,in a typical wheat-corn rotation region of the Chinese Loess Plateau.Classical statistics and empirical mode decomposition(EMD)method were applied to evaluate characteristics of the overall and scale-specific spatial variation of SWC,and to explore scale-specific correlations between SWC and soil properties.Results showed that the spatial variability of SWC along the Yangling-Wugong-Qianxian transect was medium to weak,with a variability coefficient range of 0.06–0.18,and it was gradually decreased as scale increased.We categorized the overall SWC for each soil layer under an intrinsic mode function(IMF)number based on the scale of occurrence,and found that the component IMF1 exhibited the largest contribution rates of 36.45%–56.70%.Additionally,by using EMD method,we categorized the general variation of SWC under different numbers of IMFs according to occurrence scale,and the results showed that the calculated scales among SWC for each soil layer increased in correspondence with higher IMF numbers.Approximately 78.00%of the total variance of SWC was extracted in IMF1 and IMF2.Generally,soil texture was the dominant control on SWC,and the influence of the three types of soil properties(soil particle composition,organic matter and bulk density)was more prominent at larger scales along the sampling transect.The influential factors of soil water spatial distribution can be identified and ranked on the basis of the decomposed signal from the current approach,thereby providing critical information for other researchers and natural resource managers. 展开更多
关键词 bulk density loess plateau soil water soil organic matter soil texture spatial variability
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部