Purpose The High Energy Photon Source is a fourth-generation synchrotron radiation source being built in China.It is comprised of a storage ring,a full energy booster,a 500-MeV Linac and three transport lines.The puls...Purpose The High Energy Photon Source is a fourth-generation synchrotron radiation source being built in China.It is comprised of a storage ring,a full energy booster,a 500-MeV Linac and three transport lines.The pulse charge at the exit of the Linac is required to be up to 7 nC.Both single bunch and three bunches in a beam pulse might be needed according to the studies on instabilities of the booster and the beam dynamic of the main Linac.Methods A bunching system consisting of both sub-harmonic and fundamental frequency structures is designed to meet the requirements.To obtain high transmission efficiency and control the emittance growth,multi-objective genetic algorithm is introduced to optimize the electromagnetic parameters of these structures.Results In this paper,detailed optimization process and the final results are presented.The total transmission efficiency of the bunching system is 97%,and the transmission efficiency of the main bunch is 95%.The normalized RMS emittance of 8.5 nC included beam charge is smaller than 60 mm mrad.Conclusions The design of the bunching system is presented,and both the pulse charge and the beam emittance well meet the design requirement.展开更多
Generally, a standard bunching system is composed by an SW pre-buncher, a TW buncher and a standard accelerating section. However, there is one way to simplify the whole system to some extent by using the hybrid bunch...Generally, a standard bunching system is composed by an SW pre-buncher, a TW buncher and a standard accelerating section. However, there is one way to simplify the whole system to some extent by using the hybrid buncher, which is a combined structure of the SW pre-buncher and the TW buncher. Here the beam dynamics studies on an S-band bunching system with the hybrid buncher is presented, and simulation results show that similar beam performance can be obtained at the linac exit by using this kind of bunching system rather than the standard one. In the meantime, the structure design of the hybrid buncher is also described. Furthermore, the standard accelerating section can also be integrated with the hybrid buncher, which can further simplify the usual bunching system and lower the construction cost.展开更多
Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the d...Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.展开更多
Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum...The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum to free air is tested. The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed. With the help of improved Martin-Puplett interferometer and Kramers-Krong transform, the longitudinal bunch length is measured. The results show that the peak power of THz radiation wave is more than 80 kW, and its radiation frequency is from 0.1 THz to 1.5 THz.展开更多
A bunch arrival-time monitor(BAM) system,based on electro-optical intensity modulation scheme, is under study at Shanghai Soft X-ray Free Electron Laser.The aim of the study is to achieve high-precision time measureme...A bunch arrival-time monitor(BAM) system,based on electro-optical intensity modulation scheme, is under study at Shanghai Soft X-ray Free Electron Laser.The aim of the study is to achieve high-precision time measurement for minimizing bunch fluctuations. A readout electronics is developed to fulfill the requirements of the BAM system. The readout electronics is mainly composed of a signal conditioning circuit, field-programmable gate array(FPGA), mezzanine card(FMC150), and powerful FPGA carrier board. The signal conditioning circuit converts the laser pulses into electrical pulse signals using a photodiode. Thereafter, it performs splitting and low-noise amplification to achieve the best voltage sampling performance of the dual-channel analog-to-digital converter(ADC) in FMC150. The FMC150 ADC daughter card includes a 14-bit 250 Msps dual-channel high-speed ADC,a clock configuration, and a management module. The powerful FPGA carrier board is a commercial high-performance Xilinx Kintex-7 FPGA evaluation board. To achieve clock and data alignment for ADC data capture at a high sampling rate, we used ISERDES, IDELAY, and dedicated carry-in resources in the Kintex-7 FPGA. This paper presents a detailed development of the readout electronics in the BAM system and its performance.展开更多
Data collected from truck payload management systems at various surface mines shows that the payload variance is significant and must be considered in analysing the mine productivity,energy consumption,greenhouse gas ...Data collected from truck payload management systems at various surface mines shows that the payload variance is significant and must be considered in analysing the mine productivity,energy consumption,greenhouse gas emissions and associated cost.Payload variance causes significant differences in gross vehicle weights.Heavily loaded trucks travel slower up ramps than lightly loaded trucks.Faster trucks are slowed by the presence of slower trucks,resulting in‘bunching’,production losses and increasing fuel consumptions.This paper simulates the truck bunching phenomena in large surface mines to improve truck and shovel systems’efficiency and minimise fuel consumption.The study concentrated on completing a practical simulation model based on a discrete event method which is most commonly used in this field of research in other industries.The simulation model has been validated by a dataset collected from a large surface mine in Arizona state,USA.The results have shown that there is a good agreement between the actual and estimated values of investigated parameters.展开更多
Harmonic RF cavities are commonly used in storage rings to lengthen the bunches and thus suppress the beam's instabilities and increase its Touschek lifetime. The voltage and phase of the electromagnetic fields in...Harmonic RF cavities are commonly used in storage rings to lengthen the bunches and thus suppress the beam's instabilities and increase its Touschek lifetime. The voltage and phase of the electromagnetic fields in the harmonic cavity are of great importance for stretching the bunch. In the Hefei Light Source storage ring, a passive fourth-harmonic cavity is installed, and the cavity is monitored and controlled by an analog control module provided by its manufacturer. To vary and maintain the voltage of the harmonic cavity in a more effective way, a digital proportional, integral, and derivative feedback system based on the Experimental Physics and Industrial Control System is developed on top of the analog control module. This paper reports the details of the development of this voltage control system. Some test and operational results are also presented.展开更多
This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on ...This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the AI:Ti composition with no more than 50 at.% Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10-6Ωcm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 rain rapid thermal annealing (RTA) at 1000 ℃. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3 SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing.展开更多
Bunching of elementary steps by solution flow is still not yet clarified for protein crystals. Hence, in this study, we observed elementary steps on crystal surfaces of model protein hen egg-white lysozyme (HEWL) un...Bunching of elementary steps by solution flow is still not yet clarified for protein crystals. Hence, in this study, we observed elementary steps on crystal surfaces of model protein hen egg-white lysozyme (HEWL) under forced flow conditions, by our advanced optical microscopy. We found that in the case of a HEWL solution of 99.99% purity, forced flow changed bunched steps into elementary ones (debunching) on tetragonal HEWL crystals. In contrast, in the case of a HEWL solution of 98.5% purity, forced flow significantly induced bunching of elementary steps. These results indicate that in the case of HEWL crystals, the mass transfer of impurities is more significantly enhanced by forced solution flow than that of solute HEWL molecules. We also showed that forced flow induced the incorporation of microcrystals into a mother crystal and the subsequent formation of screw dislocations and spiral growth hillocks.展开更多
We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering(ICS)X-ray source.By adding a short ...We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering(ICS)X-ray source.By adding a short standing-wave buncher between the RF gun and first booster in a conventional S-band photo-injector,electron bunches with a 500 pC charge can be compressed to the sub-picosecond level with very limited input RF power and an unchanged basic layout of the photo-injector.Beam dynamics analysis indicates that fine tuning of the focusing strength of the gun and linac solenoid can well balance additional focusing provided by the standing wave buncher and generate a well-compensated transverse emittance.Thorough bunching dynamics simulations with different operating conditions of the buncher show that a buncher with more cells and a moderate gradient is suitable for simultaneously obtaining a short bunch duration and low emittance.In a typical case of a 9-cell buncher with a 38 MV/m gradient,an ultrashort bunch duration of 0.5 ps(corresponding to a compression ratio of>5)and a low emittance of<1 mm mrad can be readily obtained for a 500 pC electron pulse.This feasible ballistic bunching scheme will facilitate the implementation of an ultrashort pulse mode inverse Compton scattering X-ray source on most existing S-band photo-injectors.展开更多
We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quan...We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom–cavity system’s nonlinear Jaynes–Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication.展开更多
The formation of macrostep during high-temperature phase of barium meta-borate (^-BaB204) single crystal growth has been investigated by both optical in-situ observation system and atomic force microscopy (AFM). T...The formation of macrostep during high-temperature phase of barium meta-borate (^-BaB204) single crystal growth has been investigated by both optical in-situ observation system and atomic force microscopy (AFM). The in- si$u observation results demonstrate that the critical linear size of growing facet exceeding the size that the macrostep generates is significantly anisotropic. The critical linear sizes are around 280 ~m and 620 ~m for {1010} and (T010} planes, respectively. AFM study illustrates that macrostep train with a height of 150 nm^200 nm is one typical morphological feature of the as-grown crystal surface. The riser of each macrostep consists of several straight and parallel sub-steps, indicating the occurrence of step bunching. Additionally, triangular sub-steps with heights of several nanometers on the treads of the macrosteps are found to be another typical feature of surface morphology, which implies a microscopically competitive bunching of sub-steps between various crystallographic orientations.展开更多
In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity ve...In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity vectors and stream function curves are obtained. Using the Prandtl theory, this paper derives the free jet velocity and the jet bunch width in a half-space, the latter of which is amended by experiment. The results obtained in this paper are applied to micro-type high pressure water jet cleaner and the ejector of rocket engine.展开更多
Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a...Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives.展开更多
This study entailed the development of a high-gradient modulation of microbunching for traditional radiation frequency accelerators using a minimized system driven by a relativistic Laguerre–Gaussian(LG)laser in thre...This study entailed the development of a high-gradient modulation of microbunching for traditional radiation frequency accelerators using a minimized system driven by a relativistic Laguerre–Gaussian(LG)laser in three-dimensional particlein-cell(PIC)simulations.It was observed that the LG laser could compress the transverse dimension of the beam to within a 0.7μm radius(divergence≈4.3 mrad),which is considerably lower than the case tuned by a Gaussian laser.In addition,the electron beam could be efficiently modulated to a high degree of bunching effect(>0.5)within~21 fs(~7μm)in the longitudinal direction.Such a high-gradient density modulation driven by an LG laser for pre-bunched,low-divergence,and stable electron beams provides a potential technology for the system minimization of X-ray free-electron lasers(XFELs)and ultrashort-scale(attosecond)electron diffraction research.展开更多
The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Pro...The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Progressive pruning is an oil palm pruning method in which pruning is done at the same time as fresh fruit bunch harvesting. This study evaluated the impact of progressive pruning on leaf miner population in oil palm and how these two factors (leaf miner and progressive pruning) affect the yield of oil palm at the Benso Oil Palm Plantation Public listed company (BOPP. Plc). Five distinct blocks in the plantation were selected for observations on fronds at various ranks (33, 25, or 17) based on the degree of defoliation by counting the number of pests on leaflets at different phases of insect development. Fronds from selected plots were sampled in a Completely Randomized Design (CRD). The size of plots used for the study ranged between 19 to 45 hectares. A minimum of 78 fronds were evenly cut from each block for pest count depending on the block size. Secondary data on annual yields of fresh fruit bunches before and after the introduction of progressive pruning were also obtained from BOPP. Plc records from 2011-2020. The results from the analyzed data on leaf miner index before and after the introduction of progressive pruning showed that progressive pruning has, to a high extent (64% to 36%), reduced leaf miner populations in the plantation. Paired t-test on fresh fruit bunch yield has also revealed a significant (p < 0.001) increase in annual fresh fruit bunch yield due to progressive pruning. A regression analysis, however, revealed a lower rate of yield loss (3.05 to 2.70 tonnes) to leaf miner infestation after the introduction of progressive pruning. The study recommends progressive pruning as a key cultural practice for improving crop yields in leaf miner prone plantations.展开更多
The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are requ...The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.展开更多
The first electron beam of the High Energy Photon Source(HEPS)was accelerated to 500 MeV with better than 2.5 nC of bunch charge by the Linear accelerator(Linac)on March 14,which was a key milestone of the HEPS projec...The first electron beam of the High Energy Photon Source(HEPS)was accelerated to 500 MeV with better than 2.5 nC of bunch charge by the Linear accelerator(Linac)on March 14,which was a key milestone of the HEPS project–HEPS beam commissioning has since begun.The HEPS Linac,with a total length of about 49 m,is an S-band normal conducting electron linear accelerator with a very high bunch charge and a large bunch charge range.As the source and first-stage accelerator of electrons,the Linac mainly comprises an electron gun,a bunching system,and a main accelerator.展开更多
The common phenomenon of uneven headway in bus service is explored based on the automatic vehicle location (AVL) data of Route 2 in Yichun City of Jiangxi province from 6:00 to 9:00 in the morning. The headway reg...The common phenomenon of uneven headway in bus service is explored based on the automatic vehicle location (AVL) data of Route 2 in Yichun City of Jiangxi province from 6:00 to 9:00 in the morning. The headway regularity of two stages 6: 00--7:00 and 7: 00--9:00 is comparatively analyzed, and it is found that both the traffic conditions and the passenger demand affect headway regularity. A bus arrival model, which assumes that the dwell time of a bus is linear in headway, is built to probe the effect of scheduled headway, and the model is simulated by Matlab. The simulation results reveal that the departure intervals and fluctuations affect headway regularity. Longer intervals and less fluctuation mean higher regularity of headway. And, the fluctuation has a more obvious influence on headway regularity than the interval. Controlling the fluctuations of scheduled headway can effectively raise the regularity of headway and improve the level of public transport service.展开更多
基金supported by National Natural Science Foundation of China under Grants(11705214,11675174)Youth Innovation Promotion Asso-ciation CAS(2019016)
文摘Purpose The High Energy Photon Source is a fourth-generation synchrotron radiation source being built in China.It is comprised of a storage ring,a full energy booster,a 500-MeV Linac and three transport lines.The pulse charge at the exit of the Linac is required to be up to 7 nC.Both single bunch and three bunches in a beam pulse might be needed according to the studies on instabilities of the booster and the beam dynamic of the main Linac.Methods A bunching system consisting of both sub-harmonic and fundamental frequency structures is designed to meet the requirements.To obtain high transmission efficiency and control the emittance growth,multi-objective genetic algorithm is introduced to optimize the electromagnetic parameters of these structures.Results In this paper,detailed optimization process and the final results are presented.The total transmission efficiency of the bunching system is 97%,and the transmission efficiency of the main bunch is 95%.The normalized RMS emittance of 8.5 nC included beam charge is smaller than 60 mm mrad.Conclusions The design of the bunching system is presented,and both the pulse charge and the beam emittance well meet the design requirement.
基金Supported by National Natural Science Foundation of China(11275222)
文摘Generally, a standard bunching system is composed by an SW pre-buncher, a TW buncher and a standard accelerating section. However, there is one way to simplify the whole system to some extent by using the hybrid buncher, which is a combined structure of the SW pre-buncher and the TW buncher. Here the beam dynamics studies on an S-band bunching system with the hybrid buncher is presented, and simulation results show that similar beam performance can be obtained at the linac exit by using this kind of bunching system rather than the standard one. In the meantime, the structure design of the hybrid buncher is also described. Furthermore, the standard accelerating section can also be integrated with the hybrid buncher, which can further simplify the usual bunching system and lower the construction cost.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)。
文摘Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10905032 and 10975088)China Postdoctoral Science Foundation (Grant No.20080440031)the China Postdoctoral Special Science Foundation (Grant No.200902088)
文摘The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum to free air is tested. The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed. With the help of improved Martin-Puplett interferometer and Kramers-Krong transform, the longitudinal bunch length is measured. The results show that the peak power of THz radiation wave is more than 80 kW, and its radiation frequency is from 0.1 THz to 1.5 THz.
基金supported by the National Key R&D Plan(No.2016YFA0401900)
文摘A bunch arrival-time monitor(BAM) system,based on electro-optical intensity modulation scheme, is under study at Shanghai Soft X-ray Free Electron Laser.The aim of the study is to achieve high-precision time measurement for minimizing bunch fluctuations. A readout electronics is developed to fulfill the requirements of the BAM system. The readout electronics is mainly composed of a signal conditioning circuit, field-programmable gate array(FPGA), mezzanine card(FMC150), and powerful FPGA carrier board. The signal conditioning circuit converts the laser pulses into electrical pulse signals using a photodiode. Thereafter, it performs splitting and low-noise amplification to achieve the best voltage sampling performance of the dual-channel analog-to-digital converter(ADC) in FMC150. The FMC150 ADC daughter card includes a 14-bit 250 Msps dual-channel high-speed ADC,a clock configuration, and a management module. The powerful FPGA carrier board is a commercial high-performance Xilinx Kintex-7 FPGA evaluation board. To achieve clock and data alignment for ADC data capture at a high sampling rate, we used ISERDES, IDELAY, and dedicated carry-in resources in the Kintex-7 FPGA. This paper presents a detailed development of the readout electronics in the BAM system and its performance.
基金CRC MiningThe University of Queensland for their financial support for this study
文摘Data collected from truck payload management systems at various surface mines shows that the payload variance is significant and must be considered in analysing the mine productivity,energy consumption,greenhouse gas emissions and associated cost.Payload variance causes significant differences in gross vehicle weights.Heavily loaded trucks travel slower up ramps than lightly loaded trucks.Faster trucks are slowed by the presence of slower trucks,resulting in‘bunching’,production losses and increasing fuel consumptions.This paper simulates the truck bunching phenomena in large surface mines to improve truck and shovel systems’efficiency and minimise fuel consumption.The study concentrated on completing a practical simulation model based on a discrete event method which is most commonly used in this field of research in other industries.The simulation model has been validated by a dataset collected from a large surface mine in Arizona state,USA.The results have shown that there is a good agreement between the actual and estimated values of investigated parameters.
基金supported by the National Natural Science Foundation of China(No.11375177)
文摘Harmonic RF cavities are commonly used in storage rings to lengthen the bunches and thus suppress the beam's instabilities and increase its Touschek lifetime. The voltage and phase of the electromagnetic fields in the harmonic cavity are of great importance for stretching the bunch. In the Hefei Light Source storage ring, a passive fourth-harmonic cavity is installed, and the cavity is monitored and controlled by an analog control module provided by its manufacturer. To vary and maintain the voltage of the harmonic cavity in a more effective way, a digital proportional, integral, and derivative feedback system based on the Experimental Physics and Industrial Control System is developed on top of the analog control module. This paper reports the details of the development of this voltage control system. Some test and operational results are also presented.
基金supported by the Key Specific Projects of Ministry of Education of China(Grant No.625010101)the National Natural Science Foundation of China(Grant No.61234006)+2 种基金the Natural Science Foundation of Shaan Xi Province,China(Grant No.2013JQ8012)the Doctoral Fund of Ministry of Education of China(Grant No.20130203120017)the Specific Project of the Core Devices,China(Grant No.2013ZX0100100-004)
文摘This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the AI:Ti composition with no more than 50 at.% Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10-6Ωcm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 rain rapid thermal annealing (RTA) at 1000 ℃. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3 SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing.
基金Chinese Academy of Sciences visiting professorship for senior international scientists(2013T2J0060)
文摘Bunching of elementary steps by solution flow is still not yet clarified for protein crystals. Hence, in this study, we observed elementary steps on crystal surfaces of model protein hen egg-white lysozyme (HEWL) under forced flow conditions, by our advanced optical microscopy. We found that in the case of a HEWL solution of 99.99% purity, forced flow changed bunched steps into elementary ones (debunching) on tetragonal HEWL crystals. In contrast, in the case of a HEWL solution of 98.5% purity, forced flow significantly induced bunching of elementary steps. These results indicate that in the case of HEWL crystals, the mass transfer of impurities is more significantly enhanced by forced solution flow than that of solute HEWL molecules. We also showed that forced flow induced the incorporation of microcrystals into a mother crystal and the subsequent formation of screw dislocations and spiral growth hillocks.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.12005211,11905210,11975218 and 11805192).
文摘We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering(ICS)X-ray source.By adding a short standing-wave buncher between the RF gun and first booster in a conventional S-band photo-injector,electron bunches with a 500 pC charge can be compressed to the sub-picosecond level with very limited input RF power and an unchanged basic layout of the photo-injector.Beam dynamics analysis indicates that fine tuning of the focusing strength of the gun and linac solenoid can well balance additional focusing provided by the standing wave buncher and generate a well-compensated transverse emittance.Thorough bunching dynamics simulations with different operating conditions of the buncher show that a buncher with more cells and a moderate gradient is suitable for simultaneously obtaining a short bunch duration and low emittance.In a typical case of a 9-cell buncher with a 38 MV/m gradient,an ultrashort bunch duration of 0.5 ps(corresponding to a compression ratio of>5)and a low emittance of<1 mm mrad can be readily obtained for a 500 pC electron pulse.This feasible ballistic bunching scheme will facilitate the implementation of an ultrashort pulse mode inverse Compton scattering X-ray source on most existing S-band photo-injectors.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305037,11347114,and 11374054)the Natural Science Foundation of Fujian Province,China(Grant No.2013J01012)
文摘We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom–cavity system’s nonlinear Jaynes–Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 50802105)
文摘The formation of macrostep during high-temperature phase of barium meta-borate (^-BaB204) single crystal growth has been investigated by both optical in-situ observation system and atomic force microscopy (AFM). The in- si$u observation results demonstrate that the critical linear size of growing facet exceeding the size that the macrostep generates is significantly anisotropic. The critical linear sizes are around 280 ~m and 620 ~m for {1010} and (T010} planes, respectively. AFM study illustrates that macrostep train with a height of 150 nm^200 nm is one typical morphological feature of the as-grown crystal surface. The riser of each macrostep consists of several straight and parallel sub-steps, indicating the occurrence of step bunching. Additionally, triangular sub-steps with heights of several nanometers on the treads of the macrosteps are found to be another typical feature of surface morphology, which implies a microscopically competitive bunching of sub-steps between various crystallographic orientations.
文摘In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity vectors and stream function curves are obtained. Using the Prandtl theory, this paper derives the free jet velocity and the jet bunch width in a half-space, the latter of which is amended by experiment. The results obtained in this paper are applied to micro-type high pressure water jet cleaner and the ejector of rocket engine.
基金This work was also supported by the Project“Development,Properties,and Application of Eco-Friendly Wood-Based Composites”,No.HИC-Б-1145/04.2021,carried out at the University of Forestry,Sofia,Bulgaria.The authors would like to acknowledge the Fundamental Research Grant Scheme(FRGS 2018-1)Reference Code:FRGS/1/2018/WAB07/UPM/1 provided by the Ministry of Higher Education,Malaysia.
文摘Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives.
基金supported by the National Natural Science Foundation of China(No.12075306)the Natural Science Foundation of Shanghai(No.22ZR1470900)Key Research Programs in Frontier Science(No.ZDBS-LY-SLH006)。
文摘This study entailed the development of a high-gradient modulation of microbunching for traditional radiation frequency accelerators using a minimized system driven by a relativistic Laguerre–Gaussian(LG)laser in three-dimensional particlein-cell(PIC)simulations.It was observed that the LG laser could compress the transverse dimension of the beam to within a 0.7μm radius(divergence≈4.3 mrad),which is considerably lower than the case tuned by a Gaussian laser.In addition,the electron beam could be efficiently modulated to a high degree of bunching effect(>0.5)within~21 fs(~7μm)in the longitudinal direction.Such a high-gradient density modulation driven by an LG laser for pre-bunched,low-divergence,and stable electron beams provides a potential technology for the system minimization of X-ray free-electron lasers(XFELs)and ultrashort-scale(attosecond)electron diffraction research.
文摘The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Progressive pruning is an oil palm pruning method in which pruning is done at the same time as fresh fruit bunch harvesting. This study evaluated the impact of progressive pruning on leaf miner population in oil palm and how these two factors (leaf miner and progressive pruning) affect the yield of oil palm at the Benso Oil Palm Plantation Public listed company (BOPP. Plc). Five distinct blocks in the plantation were selected for observations on fronds at various ranks (33, 25, or 17) based on the degree of defoliation by counting the number of pests on leaflets at different phases of insect development. Fronds from selected plots were sampled in a Completely Randomized Design (CRD). The size of plots used for the study ranged between 19 to 45 hectares. A minimum of 78 fronds were evenly cut from each block for pest count depending on the block size. Secondary data on annual yields of fresh fruit bunches before and after the introduction of progressive pruning were also obtained from BOPP. Plc records from 2011-2020. The results from the analyzed data on leaf miner index before and after the introduction of progressive pruning showed that progressive pruning has, to a high extent (64% to 36%), reduced leaf miner populations in the plantation. Paired t-test on fresh fruit bunch yield has also revealed a significant (p < 0.001) increase in annual fresh fruit bunch yield due to progressive pruning. A regression analysis, however, revealed a lower rate of yield loss (3.05 to 2.70 tonnes) to leaf miner infestation after the introduction of progressive pruning. The study recommends progressive pruning as a key cultural practice for improving crop yields in leaf miner prone plantations.
文摘The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.
文摘The first electron beam of the High Energy Photon Source(HEPS)was accelerated to 500 MeV with better than 2.5 nC of bunch charge by the Linear accelerator(Linac)on March 14,which was a key milestone of the HEPS project–HEPS beam commissioning has since begun.The HEPS Linac,with a total length of about 49 m,is an S-band normal conducting electron linear accelerator with a very high bunch charge and a large bunch charge range.As the source and first-stage accelerator of electrons,the Linac mainly comprises an electron gun,a bunching system,and a main accelerator.
基金The National Basic Research Program of China(973 Program)(No.2012CB725402)the National Natural Science Foundation of China(No.50978057)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX12_0108)
文摘The common phenomenon of uneven headway in bus service is explored based on the automatic vehicle location (AVL) data of Route 2 in Yichun City of Jiangxi province from 6:00 to 9:00 in the morning. The headway regularity of two stages 6: 00--7:00 and 7: 00--9:00 is comparatively analyzed, and it is found that both the traffic conditions and the passenger demand affect headway regularity. A bus arrival model, which assumes that the dwell time of a bus is linear in headway, is built to probe the effect of scheduled headway, and the model is simulated by Matlab. The simulation results reveal that the departure intervals and fluctuations affect headway regularity. Longer intervals and less fluctuation mean higher regularity of headway. And, the fluctuation has a more obvious influence on headway regularity than the interval. Controlling the fluctuations of scheduled headway can effectively raise the regularity of headway and improve the level of public transport service.