In order to investigate the viscoelastic performance of asphalt mastics, a micro-mechanical model for asphalt mastics was built by applying Burgers model to discrete element simulation and constructing Burgers contact...In order to investigate the viscoelastic performance of asphalt mastics, a micro-mechanical model for asphalt mastics was built by applying Burgers model to discrete element simulation and constructing Burgers contact model. Then the numerical simulation of creep tests was conducted, and results from the simulation were compared with the analytical solution for Burgers model. The comparision showed that the two results agreed well with each other, suggesting that discrete element model based on Burgers model could be employed in the numerical simulation for asphalt mastics.展开更多
Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micromacro linkage (Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull 46 345 and Jiang R, Wu Q S and Zhu Z J 2...Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micromacro linkage (Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull 46 345 and Jiang R, Wu Q S and Zhu Z J 2002 Trans. Res. B 36 405). In this paper, the Taylor expansion is adopted to modify the model. The backward travel problem is overcome by our model, which exists in many higher-order continuum models. The neutral stability condition of the model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves. Moreover, the Korteweg-de Vries-Burgers (KdV-Burgers) equation is derived to describe the traffic flow near the neutral stability line and the corresponding solution for traffic density wave is derived. The numerical simulation is carried out to investigate the local cluster effects. The results are consistent with the realistic traffic flow and also further verify the results of nonlinear analysis.展开更多
A new lattice Bhatnagar-Gross-Krook (LBGK) model for a class of the generalized Burgers equations is proposed. It is a general LBGK model for nonlinear Burgers equations with source term in arbitrary dimensional spa...A new lattice Bhatnagar-Gross-Krook (LBGK) model for a class of the generalized Burgers equations is proposed. It is a general LBGK model for nonlinear Burgers equations with source term in arbitrary dimensional space. The linear stability of the model is also studied. The model is numerically tested for three problems in different dimensional space, and the numerical results are compared with either analytic solutions or numerical results obtained by other methods. Satisfactory results are obtained by the numerical simulations.展开更多
基金The National Natural Science Foundation of China (No.50308009)
文摘In order to investigate the viscoelastic performance of asphalt mastics, a micro-mechanical model for asphalt mastics was built by applying Burgers model to discrete element simulation and constructing Burgers contact model. Then the numerical simulation of creep tests was conducted, and results from the simulation were compared with the analytical solution for Burgers model. The comparision showed that the two results agreed well with each other, suggesting that discrete element model based on Burgers model could be employed in the numerical simulation for asphalt mastics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072117 and 61074142)the Scientific Research Fund of Zhejiang Provincial Education Department,China (Grant No. Z201119278)+1 种基金the Natural Science Foundation of Ningbo City,China (Grant Nos. 2012A610152 and 2012A610038)the K. C. Wong Magna Fund in Ningbo University,China
文摘Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micromacro linkage (Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull 46 345 and Jiang R, Wu Q S and Zhu Z J 2002 Trans. Res. B 36 405). In this paper, the Taylor expansion is adopted to modify the model. The backward travel problem is overcome by our model, which exists in many higher-order continuum models. The neutral stability condition of the model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves. Moreover, the Korteweg-de Vries-Burgers (KdV-Burgers) equation is derived to describe the traffic flow near the neutral stability line and the corresponding solution for traffic density wave is derived. The numerical simulation is carried out to investigate the local cluster effects. The results are consistent with the realistic traffic flow and also further verify the results of nonlinear analysis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 70271069 and 60073044).
文摘A new lattice Bhatnagar-Gross-Krook (LBGK) model for a class of the generalized Burgers equations is proposed. It is a general LBGK model for nonlinear Burgers equations with source term in arbitrary dimensional space. The linear stability of the model is also studied. The model is numerically tested for three problems in different dimensional space, and the numerical results are compared with either analytic solutions or numerical results obtained by other methods. Satisfactory results are obtained by the numerical simulations.