Public transport system has been a means of addressing transportation challenges in urban areas, such as traffic congestion, traffic jam and long travel time in cities worldwide. Transportation in Africa is unique in ...Public transport system has been a means of addressing transportation challenges in urban areas, such as traffic congestion, traffic jam and long travel time in cities worldwide. Transportation in Africa is unique in that it has the least developed public transport systems in the world, while also being one of the fastest urbanizing continents. Bus Rapid Transit being one of the public transport systems was introduced in Africa in 2008 as a means to provide solution on urban transportation challenges. Despite of public transport being the main means of transport in African developing countries, there have been a number of challenges that affects efficiency of performance of the system and makes its users uncomfortable. Therefore, the study aimed at exploring the setbacks or challenges associated with operation and performance of the BRT system in the African developing countries and address them. The study employed mixed methods research design that integrates both qualitative and quantitative data collection methods and analysis. The study findings reveal that, there is an improvement on the perspectives of the commuters on public transport after introduction of BRT system. However, some challenges such as long waiting time, passengers overcrowding during peak hours, as well as safety and security can slowly change the perspective of the commuters. Therefore, to address these challenges it is recommended to reduce the long waiting time and improve accessibility by introduction of passenger information displays (bus information system) and automated fare collection system;reduce travel time by introduction of bus priority signal;and improve safety and security by introduction of signage and CCTV Camera within the bus and bus stops.展开更多
This paper aims to develop a customer satisfaction model for bus rapid transit (BRT). Both the socio-economic and travel characteristics of passengers were considered to be independent variables. Changzhou BRT was t...This paper aims to develop a customer satisfaction model for bus rapid transit (BRT). Both the socio-economic and travel characteristics of passengers were considered to be independent variables. Changzhou BRT was taken as an example and on which on-board surveys were conducted to collect data. Ordinal logistic regression (OLR) was used as the modeling approach. The general OLR-based procedure for modeling customer satisfaction is proposed and based on which the customer satisfaction model of Changzhou BRT is developed. Some important findings are concluded: Waiting sub-journey affects customer satisfaction the most, riding sub- journey comes second and arriving station sub-journey has relatively fewer effects. The availability of shelter and benches at stations imposes heavy influence on customer satisfaction. Passengers' socio-economic characteristics have heavy impact on customer satisfaction.展开更多
Bus rapid transit (BRT) systems have been shown to have many advantages including affordability, high capacity vehicles, and reliable service. Due to these attractive advantages, many cities throughout the world are...Bus rapid transit (BRT) systems have been shown to have many advantages including affordability, high capacity vehicles, and reliable service. Due to these attractive advantages, many cities throughout the world are in the process of planning the construction of BRT systems. To improve the performance of BRT systems, many researchers study BRT operation and control, which include the study of dwell times at bus/BRT stations. To ensure the effectiveness of real-time control which aims to avoid bus/BRT vehicles congestion, accurate dwell time models are needed. We develop our models using data from a BRT vehicle survey conducted in Changzhou, China, where BRT lines are built along passenger corridors, and BRT stations are enclosed like light rails. This means that interactions between passengers traveling on the BRT system are more frequent than those in traditional transit system who use platform stations. We statistically analyze the BRT vehicle survey data, and based on this analysis, we are able to make the following conclusions: ( I ) The delay time per passenger at a BRT station is less than that at a non-BRT station, which implies that BRT stations are efficient in the sense that they are able to move passengers quickly. (II) The dwell time follows a logarithmic normal distribution with a mean of 2.56 and a variance of 0.53. (III) The greater the number of BRT lines serviced by a station, the longer the dwell time is. (IV) Daily travel demands are highest during the morning peak interval where the dwell time, the number of passengers boarding and alighting and the number of passengers on vehicles reach their maximum values. (V) The dwell time is highly positively correlated with the total number of passengers boarding and alighting. (VI) The delay per passenger is negatively correlated with the total number of passengers boarding and alighting. We propose two dwell time models for the BRT station. The first proposed model is a linear model while the second is nonlinear. We introduce the conflict between passengers boarding and alighting into our models. Finally, by comparing our models with the models of Rajbhandari and Chien et al., and TCQSM (Transit Capacity and Quality of Service Manual), we conclude that the proposed nonlinear model can better predict the dwell time at BRT stations.展开更多
In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super...In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super (TPS), high-viscosity additive (HVA) and road-science- technology (RST), and four different asphalt binders were investigated through laboratory experiments. The percent- ages of the viscosity modifiers used were: TPS (0%, 8%, 10%, 12%, 14% and 16%) and RST and HVA (8% and 12%) depending on the type of asphalt binder. Technical indicators of modifier asphalt were tested through con- ventional and unconventional binder tests. It has been found out that only a percentage greater than or equal to 14% TPS is reasonable to achieve the requirement set by 20,000 Pa. s for the 60℃ dynamic viscosity on local #70 grade asphalt. The results indicate that conventional bin- ders did not meet the requirements of the 60℃ dynamic viscosity when 12% of TPS or HVA modifiers were used. In addition, the B-type styrene-butadienne-styrene (SBS) modified asphalt binder has better viscosity balance than the A-type SBS modified when 8% of each of the three different kinds of viscosity modifiers is used. Therefore, the B-type modified SBS thus appears to be a suitable choice in asphalt mixtures for bus rapid transit lane with the 60℃ dynamic viscosity.展开更多
Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip ma...Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip maker selects the primary and terminal transportation modes.An artificial society model is applied to the southeastern region of Osaka City,Japan.The effects of introducing BRT(bus rapid transit,primary transportation)and on-demand buses(terminal transportation)are investigated.The results confirm that BRT is used by a certain number of users.An increase in the use of BRT will increase the amount of walking,thus resulting in a healthy city.However,on-demand buses are rarely used as terminal transportation.Additionally,the development of bicycle parking stations near BRT stops is shown to be effective in the northern section of the BRT route.展开更多
Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, ...Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, and anonymized high-fidelity connected vehicle data from private vehicles have provided new opportunities for performance measures that can be used by both transit agencies and traffic signal system operators. This paper describes the use of trajectory-based data to develop performance measures for a BRT system in Indianapolis, Indiana. Over 3 million data records during the 3-month period between March and May 2022 are analyzed to develop visualizations and performance metrics. A methodology to estimate the average delay and schedule adherence is presented along a route comprised of 74 signals and 28 bus stations. Additionally, this research demonstrates how these performance measures can be used to evaluate dedicated and non-dedicated bus lanes with general traffic. Travel times and reliability of buses are compared with nearly 30 million private vehicle trips. Results show that median travel time for buses on dedicated bi-directional lanes is within one minute of general traffic and during peak periods the buses are often faster. Schedule adherence was observed to be more challenging, with approximately 3% of buses arriving within 1 minute on average during the 5AM hour and 5% of buses arriving 6 - 9 minutes late during the 5PM hour. The framework and performance measures presented in this research provide agencies and transportation professionals with tools to identify opportunities for adjustments and to justify investment decisions.展开更多
The bustling urban environment of Kathmandu Valley is characterized by unprecedented traffic congestion. Due to its bowel-shaped geography, gusty winds rarely remove vehicular emissions from the urban atmosphere, maki...The bustling urban environment of Kathmandu Valley is characterized by unprecedented traffic congestion. Due to its bowel-shaped geography, gusty winds rarely remove vehicular emissions from the urban atmosphere, making Kathmandu one of Asia’s most polluted cities, 100th city in global pollution index. Over 500,000 vehicles travel daily on over 1600 km of roads covering over 675 sq·km urban area. Thousands of low occupancy vehicles are added each year to the urban public transit system (UPTS). Kathmandu faces worse and unreliable traffic from the current UPTS mostly with low occupancy vehicles. Around 4.5 million urban denizens, both permanent and transient residents, suffer from unreliable UPTS. Traffic rules and daily transportation schedules are rarely followed, resulting in frequent traffic jams and accidents. Once experienced, visitors try avoiding the UPTS. Tourism, annually contributing almost 8 percent to Nepal’s total annual GDP, also suffers from poor UPTS. Planners, policy makers, and politicians (P-actors) are seeking ways to improve sustainable UPTS to ameliorate stresses to family life and working hours for the urban majority. Aiming to help P-actors, we propose a transit-tracker model that uses real time information (RTI) in mobile phones and web-embedded devices to inform travelers, drivers, government authorities, and sub-admins. We argue that unreliability in the UPTS motivates urban elites to add more low occupancy vehicles, which in turn reduces already shrunken urban spaces and contributes more per capita air pollution than multi-occupancy vehicles. Since mobile and smart phones are capable of processing RTI to generate meaningful information and inform various stakeholders in communicable languages, we argue that replacing low occupancy vehicles with multi-occupancy buses within a Bus Rapid Transit (BRT) system, on main roads with fixed schedules and strict traffic rules, would not only improve UPTS, but also reduce pollution in the Kathmandu Valley.展开更多
Bus Rapid Transit(BRT)has emerged as a preferred mode of public transport in various countries all over the world for its cost effectiveness in construction as well as in operation and maintenance.The rapid transit fe...Bus Rapid Transit(BRT)has emerged as a preferred mode of public transport in various countries all over the world for its cost effectiveness in construction as well as in operation and maintenance.The rapid transit feature of BRT is seen as a solution to many traffic problems in these countries.However,in developing countries like India,the right–of-way for most of the roads is restricted and traffic is heterogeneous in nature.Provision of BRT in existing right–ofway reduces the capacity available for other motorized traffic.As the buses travel with a certain frequency on dedicated bus-ways,the dedicated corridor remains unused for most of the period when other traffic on motorized vehicle(MV)lanes suffers from congestion.The problem gets severe at intersections.However,if buses are operated in mixed traffic it is no more rapid transit.Hence,a solution is required to address this problem and optimize the performance of traffic as a whole.This paper presents the effect if dedicated bus-ways end at a reasonable distance before the stop line at a busy signalized at-grade intersection,and bus lanes(beyond that)are made available to all the motorized vehicular traffic(heterogeneous traffic)at intersection.The performance evaluation is done in terms of average queue length,maximum queue length,average delay time per vehicle,vehicle throughput,average speed in network and emission of Carbon monoxide CO,mono-nitrogen oxides NOx and Volatile organic compounds(VOC).It is observed that availability of bus lanes to other motorized traffic for a reasonable distance before intersection considerably reduces the average queue length,maximum queue length,average delay time per vehicle and emission per vehicle,while there is an increase in vehicle throughput and average speed of all the vehicles in the network.Thus it results in reduction of congestion and performance enhancement of at-grade intersections and network.Results of investigation are relevant in international context.VISSIM,a microscopic simulation tool,is used to model the heterogeneous traffic and public transit lines under constraints of roadway geometry,vehicle characteristics,driving behaviour and traffic controls.The effect is investigated with different random seeds to obtain reasonable results for analysis.展开更多
文摘Public transport system has been a means of addressing transportation challenges in urban areas, such as traffic congestion, traffic jam and long travel time in cities worldwide. Transportation in Africa is unique in that it has the least developed public transport systems in the world, while also being one of the fastest urbanizing continents. Bus Rapid Transit being one of the public transport systems was introduced in Africa in 2008 as a means to provide solution on urban transportation challenges. Despite of public transport being the main means of transport in African developing countries, there have been a number of challenges that affects efficiency of performance of the system and makes its users uncomfortable. Therefore, the study aimed at exploring the setbacks or challenges associated with operation and performance of the BRT system in the African developing countries and address them. The study employed mixed methods research design that integrates both qualitative and quantitative data collection methods and analysis. The study findings reveal that, there is an improvement on the perspectives of the commuters on public transport after introduction of BRT system. However, some challenges such as long waiting time, passengers overcrowding during peak hours, as well as safety and security can slowly change the perspective of the commuters. Therefore, to address these challenges it is recommended to reduce the long waiting time and improve accessibility by introduction of passenger information displays (bus information system) and automated fare collection system;reduce travel time by introduction of bus priority signal;and improve safety and security by introduction of signage and CCTV Camera within the bus and bus stops.
基金The National Natural Science Foundation of China(No.61573098)the Scientific Research Projects in Universities of Inner Mongolia(No.NJZY16022)
文摘This paper aims to develop a customer satisfaction model for bus rapid transit (BRT). Both the socio-economic and travel characteristics of passengers were considered to be independent variables. Changzhou BRT was taken as an example and on which on-board surveys were conducted to collect data. Ordinal logistic regression (OLR) was used as the modeling approach. The general OLR-based procedure for modeling customer satisfaction is proposed and based on which the customer satisfaction model of Changzhou BRT is developed. Some important findings are concluded: Waiting sub-journey affects customer satisfaction the most, riding sub- journey comes second and arriving station sub-journey has relatively fewer effects. The availability of shelter and benches at stations imposes heavy influence on customer satisfaction. Passengers' socio-economic characteristics have heavy impact on customer satisfaction.
基金supported by the National Scienceand Technology Support Program of China (No.2009BAG17B01)
文摘Bus rapid transit (BRT) systems have been shown to have many advantages including affordability, high capacity vehicles, and reliable service. Due to these attractive advantages, many cities throughout the world are in the process of planning the construction of BRT systems. To improve the performance of BRT systems, many researchers study BRT operation and control, which include the study of dwell times at bus/BRT stations. To ensure the effectiveness of real-time control which aims to avoid bus/BRT vehicles congestion, accurate dwell time models are needed. We develop our models using data from a BRT vehicle survey conducted in Changzhou, China, where BRT lines are built along passenger corridors, and BRT stations are enclosed like light rails. This means that interactions between passengers traveling on the BRT system are more frequent than those in traditional transit system who use platform stations. We statistically analyze the BRT vehicle survey data, and based on this analysis, we are able to make the following conclusions: ( I ) The delay time per passenger at a BRT station is less than that at a non-BRT station, which implies that BRT stations are efficient in the sense that they are able to move passengers quickly. (II) The dwell time follows a logarithmic normal distribution with a mean of 2.56 and a variance of 0.53. (III) The greater the number of BRT lines serviced by a station, the longer the dwell time is. (IV) Daily travel demands are highest during the morning peak interval where the dwell time, the number of passengers boarding and alighting and the number of passengers on vehicles reach their maximum values. (V) The dwell time is highly positively correlated with the total number of passengers boarding and alighting. (VI) The delay per passenger is negatively correlated with the total number of passengers boarding and alighting. We propose two dwell time models for the BRT station. The first proposed model is a linear model while the second is nonlinear. We introduce the conflict between passengers boarding and alighting into our models. Finally, by comparing our models with the models of Rajbhandari and Chien et al., and TCQSM (Transit Capacity and Quality of Service Manual), we conclude that the proposed nonlinear model can better predict the dwell time at BRT stations.
文摘In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super (TPS), high-viscosity additive (HVA) and road-science- technology (RST), and four different asphalt binders were investigated through laboratory experiments. The percent- ages of the viscosity modifiers used were: TPS (0%, 8%, 10%, 12%, 14% and 16%) and RST and HVA (8% and 12%) depending on the type of asphalt binder. Technical indicators of modifier asphalt were tested through con- ventional and unconventional binder tests. It has been found out that only a percentage greater than or equal to 14% TPS is reasonable to achieve the requirement set by 20,000 Pa. s for the 60℃ dynamic viscosity on local #70 grade asphalt. The results indicate that conventional bin- ders did not meet the requirements of the 60℃ dynamic viscosity when 12% of TPS or HVA modifiers were used. In addition, the B-type styrene-butadienne-styrene (SBS) modified asphalt binder has better viscosity balance than the A-type SBS modified when 8% of each of the three different kinds of viscosity modifiers is used. Therefore, the B-type modified SBS thus appears to be a suitable choice in asphalt mixtures for bus rapid transit lane with the 60℃ dynamic viscosity.
基金supported by JSPS KAKENHI(grant number:21K04307).
文摘Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip maker selects the primary and terminal transportation modes.An artificial society model is applied to the southeastern region of Osaka City,Japan.The effects of introducing BRT(bus rapid transit,primary transportation)and on-demand buses(terminal transportation)are investigated.The results confirm that BRT is used by a certain number of users.An increase in the use of BRT will increase the amount of walking,thus resulting in a healthy city.However,on-demand buses are rarely used as terminal transportation.Additionally,the development of bicycle parking stations near BRT stops is shown to be effective in the northern section of the BRT route.
文摘Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, and anonymized high-fidelity connected vehicle data from private vehicles have provided new opportunities for performance measures that can be used by both transit agencies and traffic signal system operators. This paper describes the use of trajectory-based data to develop performance measures for a BRT system in Indianapolis, Indiana. Over 3 million data records during the 3-month period between March and May 2022 are analyzed to develop visualizations and performance metrics. A methodology to estimate the average delay and schedule adherence is presented along a route comprised of 74 signals and 28 bus stations. Additionally, this research demonstrates how these performance measures can be used to evaluate dedicated and non-dedicated bus lanes with general traffic. Travel times and reliability of buses are compared with nearly 30 million private vehicle trips. Results show that median travel time for buses on dedicated bi-directional lanes is within one minute of general traffic and during peak periods the buses are often faster. Schedule adherence was observed to be more challenging, with approximately 3% of buses arriving within 1 minute on average during the 5AM hour and 5% of buses arriving 6 - 9 minutes late during the 5PM hour. The framework and performance measures presented in this research provide agencies and transportation professionals with tools to identify opportunities for adjustments and to justify investment decisions.
文摘The bustling urban environment of Kathmandu Valley is characterized by unprecedented traffic congestion. Due to its bowel-shaped geography, gusty winds rarely remove vehicular emissions from the urban atmosphere, making Kathmandu one of Asia’s most polluted cities, 100th city in global pollution index. Over 500,000 vehicles travel daily on over 1600 km of roads covering over 675 sq·km urban area. Thousands of low occupancy vehicles are added each year to the urban public transit system (UPTS). Kathmandu faces worse and unreliable traffic from the current UPTS mostly with low occupancy vehicles. Around 4.5 million urban denizens, both permanent and transient residents, suffer from unreliable UPTS. Traffic rules and daily transportation schedules are rarely followed, resulting in frequent traffic jams and accidents. Once experienced, visitors try avoiding the UPTS. Tourism, annually contributing almost 8 percent to Nepal’s total annual GDP, also suffers from poor UPTS. Planners, policy makers, and politicians (P-actors) are seeking ways to improve sustainable UPTS to ameliorate stresses to family life and working hours for the urban majority. Aiming to help P-actors, we propose a transit-tracker model that uses real time information (RTI) in mobile phones and web-embedded devices to inform travelers, drivers, government authorities, and sub-admins. We argue that unreliability in the UPTS motivates urban elites to add more low occupancy vehicles, which in turn reduces already shrunken urban spaces and contributes more per capita air pollution than multi-occupancy vehicles. Since mobile and smart phones are capable of processing RTI to generate meaningful information and inform various stakeholders in communicable languages, we argue that replacing low occupancy vehicles with multi-occupancy buses within a Bus Rapid Transit (BRT) system, on main roads with fixed schedules and strict traffic rules, would not only improve UPTS, but also reduce pollution in the Kathmandu Valley.
文摘Bus Rapid Transit(BRT)has emerged as a preferred mode of public transport in various countries all over the world for its cost effectiveness in construction as well as in operation and maintenance.The rapid transit feature of BRT is seen as a solution to many traffic problems in these countries.However,in developing countries like India,the right–of-way for most of the roads is restricted and traffic is heterogeneous in nature.Provision of BRT in existing right–ofway reduces the capacity available for other motorized traffic.As the buses travel with a certain frequency on dedicated bus-ways,the dedicated corridor remains unused for most of the period when other traffic on motorized vehicle(MV)lanes suffers from congestion.The problem gets severe at intersections.However,if buses are operated in mixed traffic it is no more rapid transit.Hence,a solution is required to address this problem and optimize the performance of traffic as a whole.This paper presents the effect if dedicated bus-ways end at a reasonable distance before the stop line at a busy signalized at-grade intersection,and bus lanes(beyond that)are made available to all the motorized vehicular traffic(heterogeneous traffic)at intersection.The performance evaluation is done in terms of average queue length,maximum queue length,average delay time per vehicle,vehicle throughput,average speed in network and emission of Carbon monoxide CO,mono-nitrogen oxides NOx and Volatile organic compounds(VOC).It is observed that availability of bus lanes to other motorized traffic for a reasonable distance before intersection considerably reduces the average queue length,maximum queue length,average delay time per vehicle and emission per vehicle,while there is an increase in vehicle throughput and average speed of all the vehicles in the network.Thus it results in reduction of congestion and performance enhancement of at-grade intersections and network.Results of investigation are relevant in international context.VISSIM,a microscopic simulation tool,is used to model the heterogeneous traffic and public transit lines under constraints of roadway geometry,vehicle characteristics,driving behaviour and traffic controls.The effect is investigated with different random seeds to obtain reasonable results for analysis.