To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solv...To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solved through optimization: the judgment time of the IBA system was advanced to allow a bus to jump car queues if the bus was detected to arrive at the intersection, and the instant that the IBA lane became available to cars was controlled dynamically to increase the capacity of the IBA lane. The total car delay in one cycle was then analyzed quantitatively when implementing the optimal control system. The results show that in comparison with the existing system of the IBA, the car delay is greatly reduced and the probability of a car stopping twice is low after optimizing the IBA system.展开更多
A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy ...A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.展开更多
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d...Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.展开更多
Several factors influence bus transit reliability which includes bus stop conditions along the route, traffic conditions, route of travel and time of day. The overall transit bus reli- ability is generally affected by...Several factors influence bus transit reliability which includes bus stop conditions along the route, traffic conditions, route of travel and time of day. The overall transit bus reli- ability is generally affected by dwell time (DT), the fare payment method, the bus stop location, and the number of passengers alighting or boarding. A new variable is defined in this study, total bus stop time (TBST), which is the summation of DT and the time it takes a bus to effectively park at a bus stop and the re-entering the traffic stream. It is suggested that the overall bus transit reliability along routes could be improved if the TBST is mini- mized at bus stops. In this study, TBST models for bus stops located at mid-blocks and near intersections were developed based on multivariate regression analysis using ordinary least squares method. Data collection was conducted at 60 bus stops, 30 of which were near intersections and 30 at mid-blocks, in Washington DC during morning, mid-day and evening peak hours. The variables observed at each bus stop are as follows: number of passengers alighting or boarding, DT, TBST, bus stop type, bus pad, length number of lanes on approach to the bus stop, and permitted parking. Statistical inferences were based on 5% level of significance. From the results, it was inferred that the new variable, TBST, could potentially be used to improve scheduling and transit bus systems planning in a dense urban area.展开更多
This study proposes a flexible timetable optimization method based on hybrid vehicle size model to tackle the bus demand fluctuations in transit operation. Three different models for hybrid vehicle, large vehicle and ...This study proposes a flexible timetable optimization method based on hybrid vehicle size model to tackle the bus demand fluctuations in transit operation. Three different models for hybrid vehicle, large vehicle and small vehicle are built in this study, respectively. With the operation data of Shanghai Transit Route 55 at peak and off-peak hours, a heuristic algorithm was proposed to solve the problem. The results indicate that the hybrid vehicle size model excels the other two modes both in the total time and total cost. The study verifies the rationality of the strategy of hybrid vehicle size model and highlights the importance of the adaptive vehicle size in dealing with the bus demand fluctuation. The main innovation of the study is that unlike traditional timetables, the arrangement of the scheduling interval and the corresponding bus type or size are both involved in the timetable of hybrid vehicle size bus mode, which will be more effective to solve the problem of passenger demand fluctuation. Findings from this research would provide a new perspective to improve the level of regular bus service.展开更多
文摘To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solved through optimization: the judgment time of the IBA system was advanced to allow a bus to jump car queues if the bus was detected to arrive at the intersection, and the instant that the IBA lane became available to cars was controlled dynamically to increase the capacity of the IBA lane. The total car delay in one cycle was then analyzed quantitatively when implementing the optimal control system. The results show that in comparison with the existing system of the IBA, the car delay is greatly reduced and the probability of a car stopping twice is low after optimizing the IBA system.
基金Shanghai Municipal Science and Technology Commission, China (No. 033012017).
文摘A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.
文摘Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.
文摘Several factors influence bus transit reliability which includes bus stop conditions along the route, traffic conditions, route of travel and time of day. The overall transit bus reli- ability is generally affected by dwell time (DT), the fare payment method, the bus stop location, and the number of passengers alighting or boarding. A new variable is defined in this study, total bus stop time (TBST), which is the summation of DT and the time it takes a bus to effectively park at a bus stop and the re-entering the traffic stream. It is suggested that the overall bus transit reliability along routes could be improved if the TBST is mini- mized at bus stops. In this study, TBST models for bus stops located at mid-blocks and near intersections were developed based on multivariate regression analysis using ordinary least squares method. Data collection was conducted at 60 bus stops, 30 of which were near intersections and 30 at mid-blocks, in Washington DC during morning, mid-day and evening peak hours. The variables observed at each bus stop are as follows: number of passengers alighting or boarding, DT, TBST, bus stop type, bus pad, length number of lanes on approach to the bus stop, and permitted parking. Statistical inferences were based on 5% level of significance. From the results, it was inferred that the new variable, TBST, could potentially be used to improve scheduling and transit bus systems planning in a dense urban area.
基金sponsored in part by the National Natural Science Foundation of China(No.71101109)the Open Fund of the Key Laboratory of Highway Engineering of Ministry of Education,Changsha University of Science & Technology(No.kfj120108)
文摘This study proposes a flexible timetable optimization method based on hybrid vehicle size model to tackle the bus demand fluctuations in transit operation. Three different models for hybrid vehicle, large vehicle and small vehicle are built in this study, respectively. With the operation data of Shanghai Transit Route 55 at peak and off-peak hours, a heuristic algorithm was proposed to solve the problem. The results indicate that the hybrid vehicle size model excels the other two modes both in the total time and total cost. The study verifies the rationality of the strategy of hybrid vehicle size model and highlights the importance of the adaptive vehicle size in dealing with the bus demand fluctuation. The main innovation of the study is that unlike traditional timetables, the arrangement of the scheduling interval and the corresponding bus type or size are both involved in the timetable of hybrid vehicle size bus mode, which will be more effective to solve the problem of passenger demand fluctuation. Findings from this research would provide a new perspective to improve the level of regular bus service.