期刊文献+
共找到8,675篇文章
< 1 2 250 >
每页显示 20 50 100
Apoptosis of pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid in combination with horseradish peroxidase 被引量:5
1
作者 Chen Huang Li-Ying Liu +7 位作者 Tu-Sheng Song Lei Ni Ling Yang Xiao-Yan Hu Jing-Song Hu Li-Ping Song Yu Luo Lu-Sheng Si 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第29期4519-4523,共5页
AIM: To explore the mechanisms underlying the apoptosis of human pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid (IAA) in combination with horseradish peroxidase (HRP). METHODS: BXPC-3 cells deriv... AIM: To explore the mechanisms underlying the apoptosis of human pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid (IAA) in combination with horseradish peroxidase (HRP). METHODS: BXPC-3 cells derived from human pancreatic cancer were exposed to 40 or 80 μmol/L IAA and 1.2 μg/mL HRP at different times. Then, Mn- assay was used to detect the cell proliferation. Flow cytometry was performed to analyze cell cycle. Terminal deoxynucleotidyl transferasemediated dUTP nick end labeling assay was used to detect apoptosis. 2,7-Dichlorofluorescin diacetate uptake was measured by confocal microscopy to determine free radicals. Level of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) were measured by biochemical methods. RESULTS: IAA/HRP initiated growth inhibition of BXPC-3 cells in a dose- and time-dependent manner. Flow cytometry revealed that the cells treated for 48 h were arrested at G1/G0. After exposure to 80 μmol/L IAA plus 1.2 μg/mL HRP for 72 h, the apoptosis rate increased to 72.5‰, which was nine times that of control. Content of MDA and activity of SOD increased respectively after treatment compared to control. Meanwhile, IAA/HRP stimulated the formation of free radicals. CONCLUSION: The combination of IAA and HRP can inhibit the growth of human pancreatic cancer BXPC-3 cells in vitro by inducing apoptosis. 展开更多
关键词 Indole-3-acetic acid Horseradish peroxidase bxpc-3 cells APOPTOSIS Free radical
下载PDF
Recombinant adenovirus-mediated shRNA silencing of midkine gene in BxPC-3 cells 被引量:1
2
作者 Mingyue Xiong Kunzheng Wang 《Journal of Nanjing Medical University》 2009年第2期132-136,共5页
Objective:To investigate the silencing effects of recombinant adenovirus Ad-shRNA-MK on midkine(MK) gene in pancreatic cancer cells. Methods:Ad-shRNA-MK was used to infect pancreatic cancer BxPC-3 cells. Assays we... Objective:To investigate the silencing effects of recombinant adenovirus Ad-shRNA-MK on midkine(MK) gene in pancreatic cancer cells. Methods:Ad-shRNA-MK was used to infect pancreatic cancer BxPC-3 cells. Assays were conducted for knockdown of the MK gene on the day of infection and on the 1 ^st, 3^rd, 5^th, 7^th, and 9^th days post-infection by using immunocytochemistry, real-time RT-PCR, and Western blot analysis. Results:The adenoviral Ad-shRNA-PTN was constructed successfully, and infection was confirmed by electron microscopic observation. By using real-time RT-PCR, the inhibition rates of MK mRNA expression in the BxPC-3 cells were 20%, 80%, 55%, and 23% on the 1st, 3^th, 5^th, and 7^th days post-infection. Immunocytochemistry and Western blot analysis confirmed this effect at the gene product level. Conclusion:Efficient and specific knockdown of MK in pancreatic cancer cells by adenoviral Ad-shRNA-PTN is a potentially powerful tool for the study of gene therapy of pancreatic cancer nerve infiltration. 展开更多
关键词 bxpc-3 cell neural invasion midkine(MK) RNA interference(RNAi) short hairpin RNA(shRNA)
下载PDF
Tanshinone IIA Could Inhibit Pancreatic Cancer BxPC-3 Cells through Increasing PERK, ATF6, Caspase-12 and CHOP Expression to Induce Apoptosis 被引量:6
3
作者 Chin-Cheng Su 《Journal of Biomedical Science and Engineering》 2015年第3期149-159,共11页
Tanshinone IIA (Tan-IIA) is extracted from Dan-Shen. Tan-IIA could inhibit human pancreatic cancer BxPC-3 cells through decreasing TCTP, Mcl-1 and Bcl-xl expression in vitro. Our previous study showed that Tan-IIA can... Tanshinone IIA (Tan-IIA) is extracted from Dan-Shen. Tan-IIA could inhibit human pancreatic cancer BxPC-3 cells through decreasing TCTP, Mcl-1 and Bcl-xl expression in vitro. Our previous study showed that Tan-IIA can inhibit hepatocellular carcinoma hep-J5 cells and human breast cancer BT-20 cells through inducing endoplasmic reticulum (ER) stress. In the present study, we investigated the ER stress related protein expressions in human pancreatic cancer BxPC3 cells were treated with Tan-IIA. The ER stress related protein expressions in human pancreatic cancer BxPC-3 cells were evaluated by western blotting. The results showed that Tan-IIA can increase the protein expressions of PERK, ATF6, Caspase-12 and CHOP, but decrease Bip, PDI, Calnexin, Calreticulin and Bcl-2 expression. These findings indicated that Tan-IIA can inhibit human pancreatic cancer BxPC-3 cells by inducing ER stress to induce apoptosis. 展开更多
关键词 TANSHINONE IIA Pancreatic Cancer bxpc-3 cells ER Stress Apoptosis
下载PDF
Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature,High-Efficiency Carbon-Electrode CsPbBr_(3) Solar Cells 被引量:1
4
作者 Zeyang Zhang Weidong Zhu +10 位作者 Tianjiao Han Tianran Wang Wenming Chai Jiaduo Zhu He Xi Dazheng Chen Gang Lu Peng Dong Jincheng Zhang Chunfu Zhang Yue Hao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期168-175,共8页
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en... Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved. 展开更多
关键词 carbon-electrode perovskite solar cells crystal orientation engineering CsPbBr_(3) low temperature two-step sequential deposition
下载PDF
SENP3 Promotes Mantle Cell Lymphoma Development through Regulating Wnt10a Expression
5
作者 Yan-ni MA Yun-ding ZOU +7 位作者 Zhi-long LIU Gui-xian WU Yuan-ze ZHOU Cheng-xin LUO Xiang-tao HUANG Ming-ling XIE Shuang-nian XU Xi LI 《Current Medical Science》 SCIE CAS 2024年第1期134-143,共10页
Objective SUMO-specific protease 3(SENP3),a member of the SUMO-specific protease family,reverses the SUMOylation of SUMO-2/3 conjugates.Dysregulation of SENP3 has been proven to be involved in the development of vario... Objective SUMO-specific protease 3(SENP3),a member of the SUMO-specific protease family,reverses the SUMOylation of SUMO-2/3 conjugates.Dysregulation of SENP3 has been proven to be involved in the development of various tumors.However,its role in mantle cell lymphoma(MCL),a highly aggressive lymphoma,remains unclear.This study was aimed to elucidate the effect of SENP3 in MCL.Methods The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR,Western blotting or immunohistochemistry.MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs.Cell proliferation was assessed by CCK-8 assay,and cell apoptosis was determined by flow cytometry.mRNA sequencing(mRNA-seq)was used to investigate the underlying mechanism of SENP3 knockdown on MCL development.A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo.Results SENP3 was upregulated in MCL patient samples and cells.Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis.Meanwhile,the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown.Furthermore,the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model.Conclusion SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL. 展开更多
关键词 mantle cell lymphoma SENP3 cell proliferation APOPTOSIS
下载PDF
Dimethylamine oxalate manipulating CsPbI_(3) perovskite film crystallization process for high efficiency carbon electrode based perovskite solar cells
6
作者 Wenran Wang Xin Peng +7 位作者 Jianxin Zhang Jiage Lin Rong Huang Guizhi Zhang Huishi Guo Zhenxiao Pan Xinhua Zhong Huashang Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期221-228,I0006,共9页
Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as... Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells. 展开更多
关键词 Solar cells PEROVSKITE CsPbI_(3) Carbon electrodes OXALATE
下载PDF
miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27
7
作者 Shengjie Shi Lutong Zhang +7 位作者 Liguang Wang Huan Yuan Haowei Sun Mielie Madaniyati Chuanjiang Cai Weijun Pang Lei Gao Guiyan Chu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1315-1328,共14页
Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra... Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs. 展开更多
关键词 miR-24-3p granulosa cells PROLIFERATION APOPTOSIS
下载PDF
Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis
8
作者 Conglin Wang Fangyuan Cheng +9 位作者 Zhaoli Han Bo Yan Pan Liao Zhenyu Yin Xintong Ge Dai Li Rongrong Zhong Qiang Liu Fanglian Chen Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第2期518-532,共15页
Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)... Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes. 展开更多
关键词 AKT ASTROCYTE blood-brain barrier cerebral edema EXOSOMES human-induced pluripotent stem cells intracerebral hemorrhage neural stem cells NEUROINFLAMMATION PI3K
下载PDF
Paeoniflorin ameliorates chronic colitis via the DR3 signaling pathway in group 3 innate lymphoid cells
9
作者 Shaowei Huang Xueqian Xie +11 位作者 Bo Xu Zengfeng Pan Junjie Liang Meiling Zhang Simin Pan Xiaojing Wang Meng Zhao Qing Wang Jinyan Chen Yanyang Li Lian Zhou Xia Luo 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第6期889-901,共13页
Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a promine... Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway. 展开更多
关键词 PAEONIFLORIN Ulcerative colitis Intestinal mucosal barrier DR3 signaling pathway Group 3 innate lymphoid cells
下载PDF
3-Methyladenine potentiates paclitaxel-induced apoptosis and phosphorylation of cyclin-dependent kinase 1 at thr161 in nasopharyngeal carcinoma cell
10
作者 XIAOQI WU YECHUAN HE +4 位作者 YEQIN YUAN XIAN TAN LIN ZHU DANLING WANG BINYUAN JIANG 《BIOCELL》 SCIE 2024年第5期861-872,共12页
Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is... Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1. 展开更多
关键词 Nasopharyngeal carcinoma PACLITAXEL 3-Methyladenine cell cycle APOPTOSIS
下载PDF
Celastrol activates caspase-3/GSDME-dependent pyroptosis in tumor cells by inducing endoplasmic reticulum stress Author links open overlay panel
11
作者 Jiajian Guo Dongxiao Cui +3 位作者 Yuping Tang Sanjiao Wang Cuiyan Ma Wenfu Ma 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期330-339,共10页
Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling path... Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling pathway and the impact of endoplasmic reticulum(ER)stress and autophagy.Methods: Necrostatin-1(Nec-1),lactate dehydrogenase release(LDH)assay,and Hoechst/propidium iodide(PI)double staining were employed to validate the mode of cell death.Western blot was used to detect the cleavage of GSDME and the expression of light chain 3(LC3)and BIP.Results: Celastrol induced cell swelling with large bubbles,which is consistent with the pyroptotic phenotype.Moreover,treatment with celastrol induced GSDME cleavage,indicating the activation of GSDME-mediated pyroptosis.GSDME knockout via CRISPR/Cas9 blocked the pyroptotic morphology of celastrol in HeLa cells.In addition,cleavage of GSDME was attenuated by a specific caspase-3 inhibitor in celastrol-treated cells,suggesting that GSDME activation was induced by caspase-3.Mechanistically,celastrol induced endoplasmic reticulum(ER)stress and autophagy in HeLa cells,and other ER stress inducers produced effects consistent with those of celastrol.Conclusion: These findings suggest that celastrol triggers caspase-3/GSDME-dependent pyroptosis via activation of ER stress,which may shed light on the potential antitumor clinical applications of celastrol. 展开更多
关键词 CELASTROL Tumor cells PYROPTOSIS GSDME CASPASE-3 Endoplasmic reticulum stress stress cell death Traditional Chinese medicine
下载PDF
Highly ordered crystallization of α-FAPbl_(3) films via homogeneous seeds for efficient perovskite solar cells
12
作者 Guohui Luo Linfeng Zhang +11 位作者 Liyun Guo Xiuhong Geng Penghui Ren Yi Zhang Haihua Hu Xiaoping Wu Lingbo Xu Ping Lin Haiyan He Xuegong Yu Peng Wang Can Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期625-634,共10页
Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition... Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h. 展开更多
关键词 Perovskite solar cells FAPbI_(3) Homogeneous seeds Strain Phase stability
下载PDF
MACS-W:A modified optical clearing agent for imaging 3D cell cultures
13
作者 Xiang Zhong Chao Gao +6 位作者 Hui Li Yuening He Peng Fei Zaozao Chen Zhongze Gu Dan Zhu Tingting Yu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期24-34,共11页
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible... Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures. 展开更多
关键词 Tissue optical clearing 3D cell cultures IMAGING
下载PDF
Paclitaxel induces human KOSC3 oral cancer cell apoptosis through caspase pathways
14
作者 YU-YAN LAN TSUN-CHIH CHENG +2 位作者 YI-PING LEE CHIA-YIH WANG BU-MIIN HUANG 《BIOCELL》 SCIE 2024年第7期1047-1054,共8页
Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:... Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,flow cytometry,and western blotting assays were carried out to assess cell viability,subG1 phase of the cell cycle,and apoptosis-related protein expression,respectively.Results:Ourfindings indicate that paclitaxel could inhibit cell viability and increase the expression of apoptotic markers,including plasma membrane blebbing and the cleavage of poly ADP-ribose polymerase in KOSC3 cells.Also,the treatment with paclitaxel remarkably elevated the percentage of the subG1 phase in KOSC3 cells.In addition,treatment with a pan-caspase inhibitor could recover paclitaxel-inhibited cell viability.Moreover,caspase-8,caspase-9,caspase-7,and BH3 interacting domain death agonist(Bid)were activated in paclitaxel-treated KOSC3 cells.Conclusions:Paclitaxel induced apoptosis through caspase cascade in KOSC3 cells. 展开更多
关键词 PACLITAXEL Oral cancer KOSC3 cells APOPTOSIS Caspase pathways
下载PDF
Orthogonally woven 3D nanofiber scaffolds promote rapid soft tissue regeneration by enhancing bidirectional cell migration
15
作者 Jiayi Yuan Bingbing Sun +6 位作者 Weixing Ma Chao Cai Zhenzhen Huang Peiyi Zhou Lei Yi Lubin Liu Shixuan Chen 《Bioactive Materials》 SCIE CSCD 2024年第9期582-594,共13页
Repairing large-area soft tissue defects caused by traumas is a major surgical challenge.Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regene... Repairing large-area soft tissue defects caused by traumas is a major surgical challenge.Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regeneration.In this study,we developed an orthogonally woven three-dimensional(3D)nanofiber scaffold combining electrospinning,weaving,and modified gas-foaming technology.The developed orthogonally woven 3D nanofiber scaffold had a modular design and controlled fiber alignment.In vitro,the orthogonally woven 3D nanofiber scaffold exhibited adjustable mechanical properties,good cell compatibility,and easy drug loading.In vivo,for one thing,the implantation of an orthogonally woven 3D nanofiber scaffold in a full abdominal wall defect model demonstrated that extensive granulation tissue formation with enough mechanical strength could promote recovery of abdominal wall defects while reducing intestinal adhesion.Another result of diabetic wound repair experiments suggested that orthogonally woven 3D nanofiber scaffolds had a higher wound healing ratio,granulation tissue formation,collagen deposition,and re-epithelialization.Taken together,this novel orthogonally woven 3D nanofiber scaffold may provide a promising and effective approach for optimal soft tissue regeneration. 展开更多
关键词 Tissue regeneration ELECTROSPINNING 3D nanofiber scaffold Orthogonal weaving cell migration
原文传递
Inkjet-Printing Controlled Phase Evolution Boosts the Efficiency of Hole Transport Material Free and Carbon-Based CsPbBr_(3) Perovskite Solar Cells Exceeding 9%
16
作者 Lihua Zhang Shi Chen +7 位作者 Jie Zeng Zhengyan Jiang Qian Ai Xianfu Zhang Bihua Hu Xingzhu Wang Shihe Yang Baomin Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期209-220,共12页
Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the ... Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films. 展开更多
关键词 all-inorganic perovskite solar cells CsPbBr_(3) inkjet-printing phase evolution
下载PDF
NLRP3 and autophagy in retinal ganglion cell inflammation in age-related macular degeneration:potential therapeutic implications
17
作者 Xiao-Li Wang Yun-Xia Gao +1 位作者 Qiong-Zhen Yuan Ming Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1531-1544,共14页
Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells(RGCs).Recent studies had shown an interaction between autophagy and nucleotide-binding oligomer... Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells(RGCs).Recent studies had shown an interaction between autophagy and nucleotide-binding oligomerization domain-like receptor 3(NLRP3)inflammasomes,which may affect RGCs in retinal degenerative diseases.The NLRP3 inflammasome was a protein complex that,upon activation,produces caspase-1,mediating the apoptosis of retinal cells and promoting the occurrence and development of retinal degenerative diseases.Upregulated autophagy could inhibit NLRP3 inflammasome activation,while inhibited autophagy can promote NLRP3 inflammasome activation,which leaded to the accelerated emergence of drusen and lipofuscin deposition under the neurosensory retina.The activated NLRP3 inflammasome could further inhibit autophagy,thus forming a vicious cycle that accelerated the damage and death of RGCs.This review discussed the relationship between NLRP3 inflammasome and autophagy and its effects on RGCs in age-related macular degeneration,providing a new perspective and direction for the treatment of retinal diseases. 展开更多
关键词 AUTOPHAGY age-related macular degeneration NLRP3 inflammasome retinal degeneration retinal ganglion cells
下载PDF
Differentiation and immunosuppressive function of CD19^(+)CD24^(hi)CD27^(+) regulatory B cells are regulated through the miR-29a-3p/NFAT5 pathway
18
作者 Jin-Yang Li Tian-Shuo Feng +5 位作者 Ji Gao Xin-Xiang Yang Xiang-Cheng Li Zhen-Hua Deng Yong-Xiang Xia Zheng-Shan Wu 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第5期472-480,共9页
Background: Regulatory B cells(Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs(miRNAs), mi R-29a-3p also inhibits translation by degrading the targe... Background: Regulatory B cells(Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs(miRNAs), mi R-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and mi R-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs(m Bregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. Methods: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce mi R-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. Results: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of m Bregs in the circulating blood were significantly impaired. mi R-29a-3p was found to be a regulator of m Bregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5(NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of m Bregs. The inhibition of mi R-29a-3p in CD19~+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into m Bregs. In addition, the observed enhancement of differentiation and immunosuppressive function of m Bregs upon mi R-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. Conclusions: mi R-29a-3p was found to be a crucial regulator for m Bregs differentiation and immunosuppressive function. Silencing mi R-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation. 展开更多
关键词 Regulatory B cells miR-29a-3p NFAT5 Liver transplantation
下载PDF
The emerging role of mesenchymal stem cell-derived extracellular vesicles to ameliorate hippocampal NLRP3 inflammation induced by binge-like ethanol treatment in adolescence
19
作者 Susana Mellado María JoséMorillo-Bargues +4 位作者 Carla Perpiñá-Clérigues Francisco García-García Victoria Moreno-Manzano Consuelo Guerri María Pascual 《Neural Regeneration Research》 SCIE CAS 2025年第4期1153-1163,共11页
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ... Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence. 展开更多
关键词 ADOLESCENCE binge-like ethanol treatment extracellular vesicles hippocampus mesenchymal stem cells neuroinflammation NOD- LRR-and pyrin domain-containing protein 3(NLRP3)
下载PDF
Membrane vesicles derived from Streptococcus suis serotype 2 induce cell pyroptosis in endothelial cells via the NLRP3/Caspase-1/GSDMD pathway
20
作者 Keda Shi Yan Li +4 位作者 Minsheng Xu Kunli Zhang Hongchao Gou Chunling Li Shaolun Zhai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1338-1353,共16页
Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different... Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells. 展开更多
关键词 Streptococcus suis serotype 2 membrane vesicles ENDOCYTOSIS PYROPTOSIS NLRP3 inflammasomes mitochondrial damage endothelial cell
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部