Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneo...Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.展开更多
Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly ...Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.展开更多
3d-Metal-catalyzed tertiary C(sp^(3))–H bond activation has been a formidable challenge.Herein,a tertiary C(sp^(3))–H bond is smoothly activated by Ni–Al bimetallic catalysts for dual C–H annulation of formamides ...3d-Metal-catalyzed tertiary C(sp^(3))–H bond activation has been a formidable challenge.Herein,a tertiary C(sp^(3))–H bond is smoothly activated by Ni–Al bimetallic catalysts for dual C–H annulation of formamides with alkynes,delivering a series of δ-lactams with a quaternary carbon up to 98%yield.Various tertiary C(sp^(3))–H bonds such as noncyclic,monocyclic and bridged-ring tertiary C(sp^(3))–H bonds are all compatible with the reaction.展开更多
Pd-catalyzed oxidative homocoupling of 2-arylquinazolinones was successfully developed for the direct construction of biaryls via C—H bond activation.New well-defined structure that possessed two quinazolinone units ...Pd-catalyzed oxidative homocoupling of 2-arylquinazolinones was successfully developed for the direct construction of biaryls via C—H bond activation.New well-defined structure that possessed two quinazolinone units was obtained with high efficiency and atomic economy.The protocols offer an efficient approach to the synthetically useful and functionalized biaryls in good yields using quinazolinone as a directing group.展开更多
A photocatalytic nonoxidative coupling of methane to multi-carbon compounds remains a huge challenge due to its high dissociation energy of C–H bonds and sluggish charge carrier dynamics.Au-modified carbon-doped ZnO(...A photocatalytic nonoxidative coupling of methane to multi-carbon compounds remains a huge challenge due to its high dissociation energy of C–H bonds and sluggish charge carrier dynamics.Au-modified carbon-doped ZnO(C-ZnO/Au)photocatalyst is constructed by an interfacial modification-assisted self-assembly approach for efficient photocatalytic nonoxidative coupling of methane to ethylene and hydrogen(2CH_4=C_2H_4+2H_2).Benefitting from the presence of C-ZnO/Au interfaces,the catalyst not only weakens the excitonic confinement to improve the photogenerated charge carrier separation,but also enhances the stability of lattice oxygen to suppress C_2H_4 overoxidation.Moreover,this hybrid catalyst also accelerates the generation of Zn~+–O~–pairs to activate C–H bonds,stabilizes the important reaction intermediate(*OCH_3)to achieve the C–C coupling,and promotes the generation of low-valence Zn to accelerate the dehydrogenation of the*OC_2H_5 into C_2H_4.Therefore,a stable photocatalytic methane conversion performance can be achieved over C-ZnO/Au heterojunctions with a stoichiometric generation of the oxidation product(C_2H_4,45.85μmol g~(-1)h~(-1))and reduction product(H_2,88.07μmol g~(-1)h~(-1)).This work provides deep insights into the elemental doping and oxide/Au interfaces for the enhanced photocatalytic activity and product selectivity under mild conditions in the absence of extra oxidants.展开更多
As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by ...As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by metal-mediated coupling reaction requiring harsh reaction conditions,multiple-step synthesis,and cumbersome purification,which is not cost-efficient and may bring toxicity concerns.It is not favorable to the production of photovoltaic polymers and PSC devices on a large scale,and therefore unsuitable for the PSCs industrialization.Direct arylation coupling reaction via aromatic C―H bonds activation enables the synthesis of conjugated polymers under mild conditions and simultaneously reduces synthetic steps,difficulty,and toxic reaction byproducts.This review provides an overview of the history of preparing representative photovoltaic polymers utilized in PSCs through direct arylation reactions and discusses the activity and selectivity of C―H bonds in typical building blocks under different reaction conditions.Especially,the impact of direct arylation condition on defect formation and photovoltaic performance of the photovoltaic polymers is addressed and compared with conventional Stille coupling methods.展开更多
Biphenyl moiety represents a unique structural motif of many natural and unnatural products with biological interests, and dehydrogenative couplings of two aryl C–H bonds under oxidative conditions is unambiguously t...Biphenyl moiety represents a unique structural motif of many natural and unnatural products with biological interests, and dehydrogenative couplings of two aryl C–H bonds under oxidative conditions is unambiguously the most efficient and direct preparation of these compounds. However, higher oxidation potential of benzene derivatives makes such oxidative couplings much more difficult than other arenes. Only very limited advances have been achieved on direct formation of the crucial C–C bond between two phenyl derivatives by dehydrogenative phenyl coupling in the last two decades. This article briefly summarized and commented a number of representative recent achievements in this attractive field, including homo-, cross-and intramolecular rearrangement and couplings, as well as their applications in organic synthesis.展开更多
基金supported by National Natural Science Foundation of China(21606222,21776270)Postdoctoral Science Foundation(2017M621170,2016M601350)~~
文摘Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.
文摘Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.
基金the National Key R&D Program of China(grant no.2022YFA1504300)the National Natural Science Foundation of China(grant nos.22188101 and 22325103)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations and“Frontiers Science Center for New Organic Matter,”Nankai University(grant no.63181206)the Fundamental Research Funds for the Central Universities for financial support.
文摘3d-Metal-catalyzed tertiary C(sp^(3))–H bond activation has been a formidable challenge.Herein,a tertiary C(sp^(3))–H bond is smoothly activated by Ni–Al bimetallic catalysts for dual C–H annulation of formamides with alkynes,delivering a series of δ-lactams with a quaternary carbon up to 98%yield.Various tertiary C(sp^(3))–H bonds such as noncyclic,monocyclic and bridged-ring tertiary C(sp^(3))–H bonds are all compatible with the reaction.
基金the National Natural Science Foundation of China(No.21572072)111 Project(No.BC2018061)and Y.Feng thanks the financial support of Scientific Research Foundation of Xiamen Huaxia University(No.HX201807)+1 种基金Outstanding Youth Scientific Research Cultivation Plan in Fujian Province University(No.201808)the Fujian Education and Scientific Research Project for Young and Middle-aged Teachers(No.JAT190990)。
文摘Pd-catalyzed oxidative homocoupling of 2-arylquinazolinones was successfully developed for the direct construction of biaryls via C—H bond activation.New well-defined structure that possessed two quinazolinone units was obtained with high efficiency and atomic economy.The protocols offer an efficient approach to the synthetically useful and functionalized biaryls in good yields using quinazolinone as a directing group.
基金the funding support from the National Natural Science Foundation of China(22272120,U2202251 and 92045302)the Fundamental Research Funds for the Central Universities(2042022kf1174 and 2042021kf0213)。
文摘A photocatalytic nonoxidative coupling of methane to multi-carbon compounds remains a huge challenge due to its high dissociation energy of C–H bonds and sluggish charge carrier dynamics.Au-modified carbon-doped ZnO(C-ZnO/Au)photocatalyst is constructed by an interfacial modification-assisted self-assembly approach for efficient photocatalytic nonoxidative coupling of methane to ethylene and hydrogen(2CH_4=C_2H_4+2H_2).Benefitting from the presence of C-ZnO/Au interfaces,the catalyst not only weakens the excitonic confinement to improve the photogenerated charge carrier separation,but also enhances the stability of lattice oxygen to suppress C_2H_4 overoxidation.Moreover,this hybrid catalyst also accelerates the generation of Zn~+–O~–pairs to activate C–H bonds,stabilizes the important reaction intermediate(*OCH_3)to achieve the C–C coupling,and promotes the generation of low-valence Zn to accelerate the dehydrogenation of the*OC_2H_5 into C_2H_4.Therefore,a stable photocatalytic methane conversion performance can be achieved over C-ZnO/Au heterojunctions with a stoichiometric generation of the oxidation product(C_2H_4,45.85μmol g~(-1)h~(-1))and reduction product(H_2,88.07μmol g~(-1)h~(-1)).This work provides deep insights into the elemental doping and oxide/Au interfaces for the enhanced photocatalytic activity and product selectivity under mild conditions in the absence of extra oxidants.
基金the National Natural Science Foundation of China(No.51773046)the Fundamental Research Funds for the Central Universities,the School of Materials Science and Engineering,Shaanxi Normal Universitythe Project of Key Laboratory of Organic Synthesis of Jiangsu Province,College of Chemistry Chemical Engineering and Materials Science,Soochow University。
文摘As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by metal-mediated coupling reaction requiring harsh reaction conditions,multiple-step synthesis,and cumbersome purification,which is not cost-efficient and may bring toxicity concerns.It is not favorable to the production of photovoltaic polymers and PSC devices on a large scale,and therefore unsuitable for the PSCs industrialization.Direct arylation coupling reaction via aromatic C―H bonds activation enables the synthesis of conjugated polymers under mild conditions and simultaneously reduces synthetic steps,difficulty,and toxic reaction byproducts.This review provides an overview of the history of preparing representative photovoltaic polymers utilized in PSCs through direct arylation reactions and discusses the activity and selectivity of C―H bonds in typical building blocks under different reaction conditions.Especially,the impact of direct arylation condition on defect formation and photovoltaic performance of the photovoltaic polymers is addressed and compared with conventional Stille coupling methods.
基金supported by the National Natural Science Foundation of China(21472087)
文摘Biphenyl moiety represents a unique structural motif of many natural and unnatural products with biological interests, and dehydrogenative couplings of two aryl C–H bonds under oxidative conditions is unambiguously the most efficient and direct preparation of these compounds. However, higher oxidation potential of benzene derivatives makes such oxidative couplings much more difficult than other arenes. Only very limited advances have been achieved on direct formation of the crucial C–C bond between two phenyl derivatives by dehydrogenative phenyl coupling in the last two decades. This article briefly summarized and commented a number of representative recent achievements in this attractive field, including homo-, cross-and intramolecular rearrangement and couplings, as well as their applications in organic synthesis.