Hot compression tests were performed to investigate the hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150℃ and t...Hot compression tests were performed to investigate the hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150℃ and the strain rate range was 0.01–5 s^(-1)on a Gleeble-3800 thermal simulator machine. The results showed that the flow stress increased with decreasing deformation temperature and increasing strain rate. According to the constitutive equation, the activation energy of hot deformation was 422.88 kJ·mol^(-1). The relationship between the critical stress and peak stress of the tested steel was established, and a dynamic recrystallization kinetic model was thus obtained. Based on this model, the effects of strain rate and deformation temperature on the volume fraction of dynamically recrystallized grains were explored. The microstructural examination and processing map results revealed that the tested steel exhibited a good hot workability at deformation temperatures of 1010–1100℃ and strain rate of 0.01 s^(-1).展开更多
LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechani...LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.展开更多
In this work,the influence of CO2 on the structural variation and catalytic performance of Na2WO4/Mn/Si O2 for oxidative coupling of methane to ethylene was investigated. The catalyst was prepared by impregnation meth...In this work,the influence of CO2 on the structural variation and catalytic performance of Na2WO4/Mn/Si O2 for oxidative coupling of methane to ethylene was investigated. The catalyst was prepared by impregnation method and characterized by XRD,Raman and XPS techniques. Appropriate amount of CO2 in the reactant gases enhanced the formation of surface tetrahedral Na2WO4 species and promoted the migration of O in MOx,Na,W from the catalyst bulk to surface,which were favorable for oxidative coupling of methane. When the molar ratio of CH4/O2/CO2 was 3/1/2,enriched surface tetrahedral Na2WO4 species and high surface concentration of O in MOx,Na,W were detected,and then high CH4 conversion of 33.1% and high C2H4 selectivity of 56.2% were obtained. With further increase of CO2 in the reagent gases,the content of active surface tetrahedral Na2WO4 species and surface concentration of O in MOx,Na,W decreased,while that of inactive species(Mn WO4 and Mn2O3) increased dramatically,leading to low CH4 conversion and low C2H4 selectivity. It could be speculated that Na2WO4 crystal was transformed into Mn WO4 crystal with excessive CO2 added under the reaction conditions. Pretreatment of Na2WO4/Mn/Si O2 catalyst by moderate amount of CO2 before OCM also promoted the formation of Na2WO4 species.展开更多
Expressing the excess partial molar free energies and integral excess free energy as poly- nome of the composition,then the parameters in the expression of excess partial molar free energy of C were evaluated based on...Expressing the excess partial molar free energies and integral excess free energy as poly- nome of the composition,then the parameters in the expression of excess partial molar free energy of C were evaluated based on:the excess partial free energy of C in C-Fe bi- nary alloy:the integral excess free energy of Fe-X binary alloy:the C saturation curve and the iso-activity curve of C (α_c=0.025) in the ternary system.Then the activity coefficient of X was evaluated with the so-called “I-D” method,by which the component activities of every element in the whole molten ternary alloy can be evaluated,and the results are in good agreement with literature data based on experiment.展开更多
汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量...汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量分数为5%~10%)。其中,Fe-Mn-Al-C系低密度高强钢由于Al元素的加入,在密度降低的同时保持着良好的力学性能,满足第三代汽车用钢对轻量化的要求。同时,由于大量Al、Mn和C元素的添加,Fe-Mn-Al-C系低密度钢的冶炼连铸、微观结构、变形机制、加工过程及应用性能与传统钢种大不相同。本文系统阐述了Fe-Mn-Al-C系低密度钢的成分设计及其中合金元素的作用,介绍了低密度钢的微观组织结构特征;重点讨论了单一铁素体钢、奥氏体基钢、奥氏体基双相钢和铁素体基双相钢的各种强韧化机制,包括固溶强化、细晶强化、沉淀强化及其独特的应变硬化机制,如相变诱导塑性(TRIP)、孪晶诱导塑性(TWIP)、微带诱导塑性(MBIP)、剪切带诱导塑性(SIP)和动态滑移带细化(DSBR)等;并就层错能(SFE)对奥氏体钢变形机制产生的影响进行了总结;最后,对Fe-Mn-Al-C系低密度钢的强韧化机制研究进行展望,为后续研究者的工作提供参考。展开更多
The solubility of C in Mn melt at different contents of Si at 1350℃ was determined.The sol- ubility of Ca in Mn melts containing C in CaC_2 crucible under sealed condition at 1350℃ was ascertained.With these data,ev...The solubility of C in Mn melt at different contents of Si at 1350℃ was determined.The sol- ubility of Ca in Mn melts containing C in CaC_2 crucible under sealed condition at 1350℃ was ascertained.With these data,evaluation of the activity interaction coefficients e_C^(Si),e_C^C, e_C^(Ca) as well as γ_C^0 was made.The standard free energy of solution of C in liquid Mn based on the 1 wt-% solution standard,formulated in relation to T,was also estimated.Brief dis- cussion was made as to the confiormability of results with those given in the literature.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 52071300 and 51904278)the Special Funding Projects for Local Science and Technology Development guided by the Central Committee (No. YDZX20191400004587)+1 种基金the Key Research and Development Project of Zhejiang Province, China (No.2020C01131)the Innovation projects of colleges and universities in Shanxi Province, China (No. 2019L0577)。
文摘Hot compression tests were performed to investigate the hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150℃ and the strain rate range was 0.01–5 s^(-1)on a Gleeble-3800 thermal simulator machine. The results showed that the flow stress increased with decreasing deformation temperature and increasing strain rate. According to the constitutive equation, the activation energy of hot deformation was 422.88 kJ·mol^(-1). The relationship between the critical stress and peak stress of the tested steel was established, and a dynamic recrystallization kinetic model was thus obtained. Based on this model, the effects of strain rate and deformation temperature on the volume fraction of dynamically recrystallized grains were explored. The microstructural examination and processing map results revealed that the tested steel exhibited a good hot workability at deformation temperatures of 1010–1100℃ and strain rate of 0.01 s^(-1).
基金the financial support from the Research and Development Plan Project in Key Fields of Guangdong Province(2020B0101030005)Applied Special Project of Guangdong Provincial Science and Technology Plan(2017B090917002)+1 种基金Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120027)Key R&D projects in Guangdong Province(2020B0101030005)。
文摘LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.
基金support from the Ministry of Science and Technology (Nos.2012BAC20B10)the National Natural Science Foundation of China (Nos. 21321061 and 20976109)
文摘In this work,the influence of CO2 on the structural variation and catalytic performance of Na2WO4/Mn/Si O2 for oxidative coupling of methane to ethylene was investigated. The catalyst was prepared by impregnation method and characterized by XRD,Raman and XPS techniques. Appropriate amount of CO2 in the reactant gases enhanced the formation of surface tetrahedral Na2WO4 species and promoted the migration of O in MOx,Na,W from the catalyst bulk to surface,which were favorable for oxidative coupling of methane. When the molar ratio of CH4/O2/CO2 was 3/1/2,enriched surface tetrahedral Na2WO4 species and high surface concentration of O in MOx,Na,W were detected,and then high CH4 conversion of 33.1% and high C2H4 selectivity of 56.2% were obtained. With further increase of CO2 in the reagent gases,the content of active surface tetrahedral Na2WO4 species and surface concentration of O in MOx,Na,W decreased,while that of inactive species(Mn WO4 and Mn2O3) increased dramatically,leading to low CH4 conversion and low C2H4 selectivity. It could be speculated that Na2WO4 crystal was transformed into Mn WO4 crystal with excessive CO2 added under the reaction conditions. Pretreatment of Na2WO4/Mn/Si O2 catalyst by moderate amount of CO2 before OCM also promoted the formation of Na2WO4 species.
文摘Expressing the excess partial molar free energies and integral excess free energy as poly- nome of the composition,then the parameters in the expression of excess partial molar free energy of C were evaluated based on:the excess partial free energy of C in C-Fe bi- nary alloy:the integral excess free energy of Fe-X binary alloy:the C saturation curve and the iso-activity curve of C (α_c=0.025) in the ternary system.Then the activity coefficient of X was evaluated with the so-called “I-D” method,by which the component activities of every element in the whole molten ternary alloy can be evaluated,and the results are in good agreement with literature data based on experiment.
文摘汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量分数为5%~10%)。其中,Fe-Mn-Al-C系低密度高强钢由于Al元素的加入,在密度降低的同时保持着良好的力学性能,满足第三代汽车用钢对轻量化的要求。同时,由于大量Al、Mn和C元素的添加,Fe-Mn-Al-C系低密度钢的冶炼连铸、微观结构、变形机制、加工过程及应用性能与传统钢种大不相同。本文系统阐述了Fe-Mn-Al-C系低密度钢的成分设计及其中合金元素的作用,介绍了低密度钢的微观组织结构特征;重点讨论了单一铁素体钢、奥氏体基钢、奥氏体基双相钢和铁素体基双相钢的各种强韧化机制,包括固溶强化、细晶强化、沉淀强化及其独特的应变硬化机制,如相变诱导塑性(TRIP)、孪晶诱导塑性(TWIP)、微带诱导塑性(MBIP)、剪切带诱导塑性(SIP)和动态滑移带细化(DSBR)等;并就层错能(SFE)对奥氏体钢变形机制产生的影响进行了总结;最后,对Fe-Mn-Al-C系低密度钢的强韧化机制研究进行展望,为后续研究者的工作提供参考。
文摘The solubility of C in Mn melt at different contents of Si at 1350℃ was determined.The sol- ubility of Ca in Mn melts containing C in CaC_2 crucible under sealed condition at 1350℃ was ascertained.With these data,evaluation of the activity interaction coefficients e_C^(Si),e_C^C, e_C^(Ca) as well as γ_C^0 was made.The standard free energy of solution of C in liquid Mn based on the 1 wt-% solution standard,formulated in relation to T,was also estimated.Brief dis- cussion was made as to the confiormability of results with those given in the literature.