Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infilt...Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
The SiC whiskers (SiCw) synthesized from rice hulls is studied in this paper. The properties of the application in the composite materials are tested, and also compared with the SiCw produced in US and Japan, the resu...The SiC whiskers (SiCw) synthesized from rice hulls is studied in this paper. The properties of the application in the composite materials are tested, and also compared with the SiCw produced in US and Japan, the results indicate that the SiCw produced by this method is mainly straight crystals with multi nodes on face, the main type is P-SiC. lt has many advantages such as high strength and excellent oxidation resistance to high temperature. The Si3N4 ceramic composite materials reinforced and toughened with the SiCw, δfRT of the material is (856±22)MPa, δf300℃ is approximately (418. 5±14. 2) MPa and Klc is approximately (11. 3±1. 0) MPa m1/2. Besides, the application of the SiCw in the engineering materials of mining is forecasted.展开更多
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2F...In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.展开更多
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/...C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively.展开更多
SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens o...SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the an...Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered.展开更多
An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the w...An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.展开更多
Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in t...Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in the codeposition matrix. Oxidation rate of C/C-SiC gradient matrix composites is significantly lower than that of C/C material. The micro-oxidation process was observed by SEM.展开更多
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me...The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.展开更多
The oxidation behavior of chemical vapor infiltration(CVI),molten silicon infiltration(MSI)and CVI+MSI C/SiC composites at 500-1 400℃was studied.The oxidation below 900℃increased successively for CVI,CVI+MSI and MSI...The oxidation behavior of chemical vapor infiltration(CVI),molten silicon infiltration(MSI)and CVI+MSI C/SiC composites at 500-1 400℃was studied.The oxidation below 900℃increased successively for CVI,CVI+MSI and MSI composites.However,the oxidation of CVI composite above 1 000 ℃was much faster thanthat of MSI and CVI+MSI composites. As active carbon atoms produced by siliconization of fibers during MSI process were oxidized first and decreased initial oxidation temperature.The initial oxidation temperature of MSI,MSI+CVI and CVI composites was 526,552 and 710℃,respectively.New active carbon atoms were generated due to the breaking of 2D molecular chains during oxidation,so the activation energy of three C/SiC composites was decreased gradually at 500-800℃with oxidation process,exhibiting a self-catalytic characteristic.展开更多
The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and fri...The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and frictional properties of the brake materials were investigated.The density and open porosity of the materials as-received were about(2.1±0.1)g/cm3and(5±1)%,respectively.The brake materials were composed of 59%C,39%SiC,and 2%Si(mass fraction).The content of Si in the C/SiC brake materials modified with graphite was far less than that in the C/SiC brake materials without being modified with graphite,and the Si was dispersed.The braking curve of the 3D needled C/SiC modified with graphite was smooth,which can ensure the smooth and comfortable braking.The frictional properties under wet condition of the 3D needled C/SiC modified with graphite showed no fading.And the linear wear rate of the C/SiC modified with graphite was lower than that of the C/SiC unmodified.展开更多
Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of in...Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2展开更多
A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have bee...A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have been investigated, it is found that gases and pollutants absorbed on the surface prohibit SiC particulates from uniformly dispersing in the alloy melt.展开更多
Carbon fibre reinforced carbon and silicon carbide dual matrix composites(C/C-SiC) were fabricated by the warm compacted-in situ reaction.The microstructure,mechanical properties,tribological properties,and wear mec...Carbon fibre reinforced carbon and silicon carbide dual matrix composites(C/C-SiC) were fabricated by the warm compacted-in situ reaction.The microstructure,mechanical properties,tribological properties,and wear mechanism of C/C-SiC composites at different brake speeds were investigated.The results indicate that the composites are composed of 58wt%C,37wt%SiC,and 5wt%Si.The density and open porosity are 2.0 g.cm^(-3) and 10%,respectively.The C/C-SiC brake composites exhibit good mechanical properties.The flexural strength can reach up to 160 MPa,and the impact strength can reach 2.5 kJ.m^(-2).The C/C-SiC brake composites show excellent tribological performances.The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s^(-1).The brake is stable,and the wear rate is less than 2.02×10^(-6) cm^3·J^(-1).These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems.展开更多
To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the ...To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.展开更多
High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulati...High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulation of the composites by means of acoustic emission was researched. Also the fracture morphology was examined by S-4700 SEM after tensile tests to prove the damage mechanism. The results indicate that the cumulative energy of acoustic emission (AE) signals can be used to monitor and evaluate the damage evolution in ceramic-matrix composites. The initiation of room-temperature tensile damage in C/SiC composites occurred with the growth of micro-cracks in the matrix at the stress level about 40% of the ultimate fracture stress. The level 70% of the fracture stress could be defined as the critical damage strength.展开更多
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(2011M500127)supported by the China Postdoctoral Science Foundation+2 种基金Projects(51102089,50802115)supported by the National Natural Science Foundation of ChinaProjects(12JJ4046,12JJ9014)supported by the Natural Science Foundation of Hunan Province,ChinaProject(74341015817)supported by the Post-doctoral Fund of Central South University,China
文摘Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
文摘The SiC whiskers (SiCw) synthesized from rice hulls is studied in this paper. The properties of the application in the composite materials are tested, and also compared with the SiCw produced in US and Japan, the results indicate that the SiCw produced by this method is mainly straight crystals with multi nodes on face, the main type is P-SiC. lt has many advantages such as high strength and excellent oxidation resistance to high temperature. The Si3N4 ceramic composite materials reinforced and toughened with the SiCw, δfRT of the material is (856±22)MPa, δf300℃ is approximately (418. 5±14. 2) MPa and Klc is approximately (11. 3±1. 0) MPa m1/2. Besides, the application of the SiCw in the engineering materials of mining is forecasted.
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金supported by the Programs of National 973(2011CB935900)NSFC(21231005)+1 种基金MOE(B12015 and 113016A)the Fundamental Research Funds for the Central Universities
文摘In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(51304249)supported by the National Natural Science Foundation of China+1 种基金Project(2013BAE04B02)supported by the National Key Technology Support Program of ChinaProject(14JJ3023)supported by the Hunan Provincial Science Foundation of China
文摘C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively.
基金Project(201206375003)supported by the China Scholarship Council
文摘SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金Project supported by the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,ChinaProject(CJ12-01-01)supported by the Innovative Group of National University of Defense Technology,ChinaProject(SAST2015043)supported by the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology,China
文摘Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered.
文摘An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.
文摘Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in the codeposition matrix. Oxidation rate of C/C-SiC gradient matrix composites is significantly lower than that of C/C material. The micro-oxidation process was observed by SEM.
文摘The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.
基金Project(2006CB600908)supported by the National Basic Research Program of China
文摘The oxidation behavior of chemical vapor infiltration(CVI),molten silicon infiltration(MSI)and CVI+MSI C/SiC composites at 500-1 400℃was studied.The oxidation below 900℃increased successively for CVI,CVI+MSI and MSI composites.However,the oxidation of CVI composite above 1 000 ℃was much faster thanthat of MSI and CVI+MSI composites. As active carbon atoms produced by siliconization of fibers during MSI process were oxidized first and decreased initial oxidation temperature.The initial oxidation temperature of MSI,MSI+CVI and CVI composites was 526,552 and 710℃,respectively.New active carbon atoms were generated due to the breaking of 2D molecular chains during oxidation,so the activation energy of three C/SiC composites was decreased gradually at 500-800℃with oxidation process,exhibiting a self-catalytic characteristic.
基金Project(46-QP-2009)supported by the Research Fund of State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and frictional properties of the brake materials were investigated.The density and open porosity of the materials as-received were about(2.1±0.1)g/cm3and(5±1)%,respectively.The brake materials were composed of 59%C,39%SiC,and 2%Si(mass fraction).The content of Si in the C/SiC brake materials modified with graphite was far less than that in the C/SiC brake materials without being modified with graphite,and the Si was dispersed.The braking curve of the 3D needled C/SiC modified with graphite was smooth,which can ensure the smooth and comfortable braking.The frictional properties under wet condition of the 3D needled C/SiC modified with graphite showed no fading.And the linear wear rate of the C/SiC modified with graphite was lower than that of the C/SiC unmodified.
文摘Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2
文摘A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have been investigated, it is found that gases and pollutants absorbed on the surface prohibit SiC particulates from uniformly dispersing in the alloy melt.
基金supported by the National High-Tech Research and Development Program of China(No.2006AA03Z560)the Graduate Degree Thesis Innovation Foundation of Central South University(No.2008yb019)
文摘Carbon fibre reinforced carbon and silicon carbide dual matrix composites(C/C-SiC) were fabricated by the warm compacted-in situ reaction.The microstructure,mechanical properties,tribological properties,and wear mechanism of C/C-SiC composites at different brake speeds were investigated.The results indicate that the composites are composed of 58wt%C,37wt%SiC,and 5wt%Si.The density and open porosity are 2.0 g.cm^(-3) and 10%,respectively.The C/C-SiC brake composites exhibit good mechanical properties.The flexural strength can reach up to 160 MPa,and the impact strength can reach 2.5 kJ.m^(-2).The C/C-SiC brake composites show excellent tribological performances.The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s^(-1).The brake is stable,and the wear rate is less than 2.02×10^(-6) cm^3·J^(-1).These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Aeronautical Science Foundation of China(No.2012ZB52026)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.
基金the National Natural Science Foundation of China(No.90405015)the National Young Elitist Foundation of China(No.50425208)the Doctorate Foundation of Northwestern Polytechnical University(No.CX200406)
文摘High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulation of the composites by means of acoustic emission was researched. Also the fracture morphology was examined by S-4700 SEM after tensile tests to prove the damage mechanism. The results indicate that the cumulative energy of acoustic emission (AE) signals can be used to monitor and evaluate the damage evolution in ceramic-matrix composites. The initiation of room-temperature tensile damage in C/SiC composites occurred with the growth of micro-cracks in the matrix at the stress level about 40% of the ultimate fracture stress. The level 70% of the fracture stress could be defined as the critical damage strength.