Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave...Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave propagation in multilayered vdW metamaterials is reported in this paper.Molecular dynamics(MD)simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials.The results show that the graphene/MoS_(2)metamaterials have an elastic wave bandgap in the terahertz range.The MSM for the multilayered vdW metamaterials is proposed,and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials.The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional(2D)materials.The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors.展开更多
The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O...The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.展开更多
We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass ...We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass transition. It is more probable that these multilayers contain both Tb superparamagnetic particles and Tb-Si spin-glass alloys.展开更多
Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are char...Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are characterized by scanning electron microscopy and Doppler broadening positron annihilation spectroscopy. The results show that plenty of point defects can be produced by introducing He during the growth of the multilayer nanofilms. With the increasing natural storage time, He located in the near surface of the Cu//W multilayer nanofilm at room temperature could be released gradually and induce the segregation of He-related defects due to the diffusion of He and defects. However, more He in the deep region spread along the interface of the Cu/W multilayer nanofilm. Meanwhile, the layer interfaces can still maintain their stability.展开更多
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
TiN single coatings and TiN/Ti(C,N) multilayer coatings deposited on Cr12MoV substrate have been completed by pulsed DC plasma enhanced chemical vapor deposition(PCVD) process. The SEM, XRD and microvicker’s hardness...TiN single coatings and TiN/Ti(C,N) multilayer coatings deposited on Cr12MoV substrate have been completed by pulsed DC plasma enhanced chemical vapor deposition(PCVD) process. The SEM, XRD and microvicker’s hardness as well as the indentation test were used to study the microstructure and mechanical properties of TiN/Ti(C,N) multilayer coatings. The results show that TiN/Ti(C,N) coatings are fine and have free column structure, and carbon atoms take the place of some nitrogen atoms in Ti(C,N) coatings when lower flow ratio of CH 4 is used. The microvicker’s hardness and interfacial adhesion between TiN/Ti(C,N) coatings and Cr12MoV substrate increases more obviously than that of TiN single hard coatings due to the more dense and free column structure when process is optimized.展开更多
Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation ...Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).展开更多
The aim of this work was to investigate the effects of low-resistivity interlayer on the physical properties of periodic Ba_(0.9)Sr_(0.1)Ti_(0.99)Mn_(0.01)O_3(BSTM) multilayers prepared by a chemical solutio...The aim of this work was to investigate the effects of low-resistivity interlayer on the physical properties of periodic Ba_(0.9)Sr_(0.1)Ti_(0.99)Mn_(0.01)O_3(BSTM) multilayers prepared by a chemical solution deposition method. A LaNiO_3(LNO) layer was inserted into the periodic BSTM multilayer artificially to form a sandwiched configuration of BSTM/LNO/BSTM. The capacitances at low frequencies(〈100 k Hz) of the sandwiched multilayer are significantly enhanced compared to that of the pure BSTM multilayer. The space charge accumulated at the LNO layer was proposed to explain the enhancement based on Maxwell-Wagner(M-W) model. However, LNO interlayer leads to an increase in the leakage current. A non-Ohmic conduction region is observed for BSTM/LNO/BSTM multilayer when the electric field exceeds 100 k V/cm. The results offer a new approach to achieve dielectric films with high dielectric constant.展开更多
By direct observations of transmission electron microscopy (TEM), irreversible morphological transformations of as-deposited amorphous Au/Si multilayer (a-Au/a-Si) were observed on heating. The well arrayed sequence o...By direct observations of transmission electron microscopy (TEM), irreversible morphological transformations of as-deposited amorphous Au/Si multilayer (a-Au/a-Si) were observed on heating. The well arrayed sequence of the multilayer changed to zigzag layered structure at 478 K (=Tzig). Finally, the zigzag structure transformed to Au nanoparticles at 508 K. The distribution of the Au nanoparticles was random within the thin film. In situ X-ray diffraction during heating can clarify partial crystallization Si (c-Si) in the multilayer at 450 K (= ), which corresponds to metal induced crystallization (MIC) from amorphous Si (a-Si) accompanying by Au diffusion. On further heating, a-Au started to crystallize at around 480 K (=Tc) and gradually grew up to 3.2 nm in radius, although the volume of c-Si was almost constant. Continuous heating caused crystal Au (c-Au) melting into liquid AuSi (l-AuSi) at 600 K (= ), which was lower than bulk eutectic temperature ( ). Due to the AuSi eutectic effect, reversible phase transition between liquid and solid occurred once temperature is larger than . Proportionally to the maximum temperatures at each cycles (673, 873 and 1073 K), both and Au crystallization temperature approaches to . Using a thermodynamic theory of the nanoparticle formation in the eutectic system, the relationship between and the nanoparticle size is explained.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.11925205)the National Natural Science Foundation of China(Nos.51921003 and U2341230)。
文摘Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave propagation in multilayered vdW metamaterials is reported in this paper.Molecular dynamics(MD)simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials.The results show that the graphene/MoS_(2)metamaterials have an elastic wave bandgap in the terahertz range.The MSM for the multilayered vdW metamaterials is proposed,and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials.The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional(2D)materials.The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors.
基金Funded by the Technology Innovation Leading Program of Shaanxi(No.2022QFY08-02)。
文摘The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.
文摘We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass transition. It is more probable that these multilayers contain both Tb superparamagnetic particles and Tb-Si spin-glass alloys.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275132,51171124 and 11505121the International Science and Technology Cooperation Program of China under Grant No 2014DFR50710the Scientific and Technical Supporting Programs Funded by the Science and Technology Department of Sichuan Province under Grant No 2014GZ0004
文摘Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are characterized by scanning electron microscopy and Doppler broadening positron annihilation spectroscopy. The results show that plenty of point defects can be produced by introducing He during the growth of the multilayer nanofilms. With the increasing natural storage time, He located in the near surface of the Cu//W multilayer nanofilm at room temperature could be released gradually and induce the segregation of He-related defects due to the diffusion of He and defects. However, more He in the deep region spread along the interface of the Cu/W multilayer nanofilm. Meanwhile, the layer interfaces can still maintain their stability.
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
文摘TiN single coatings and TiN/Ti(C,N) multilayer coatings deposited on Cr12MoV substrate have been completed by pulsed DC plasma enhanced chemical vapor deposition(PCVD) process. The SEM, XRD and microvicker’s hardness as well as the indentation test were used to study the microstructure and mechanical properties of TiN/Ti(C,N) multilayer coatings. The results show that TiN/Ti(C,N) coatings are fine and have free column structure, and carbon atoms take the place of some nitrogen atoms in Ti(C,N) coatings when lower flow ratio of CH 4 is used. The microvicker’s hardness and interfacial adhesion between TiN/Ti(C,N) coatings and Cr12MoV substrate increases more obviously than that of TiN single hard coatings due to the more dense and free column structure when process is optimized.
文摘Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).
基金Funded by the National Natural Science Foundation of China(No.61106126)Jiangsu Qing Lan Project
文摘The aim of this work was to investigate the effects of low-resistivity interlayer on the physical properties of periodic Ba_(0.9)Sr_(0.1)Ti_(0.99)Mn_(0.01)O_3(BSTM) multilayers prepared by a chemical solution deposition method. A LaNiO_3(LNO) layer was inserted into the periodic BSTM multilayer artificially to form a sandwiched configuration of BSTM/LNO/BSTM. The capacitances at low frequencies(〈100 k Hz) of the sandwiched multilayer are significantly enhanced compared to that of the pure BSTM multilayer. The space charge accumulated at the LNO layer was proposed to explain the enhancement based on Maxwell-Wagner(M-W) model. However, LNO interlayer leads to an increase in the leakage current. A non-Ohmic conduction region is observed for BSTM/LNO/BSTM multilayer when the electric field exceeds 100 k V/cm. The results offer a new approach to achieve dielectric films with high dielectric constant.
文摘By direct observations of transmission electron microscopy (TEM), irreversible morphological transformations of as-deposited amorphous Au/Si multilayer (a-Au/a-Si) were observed on heating. The well arrayed sequence of the multilayer changed to zigzag layered structure at 478 K (=Tzig). Finally, the zigzag structure transformed to Au nanoparticles at 508 K. The distribution of the Au nanoparticles was random within the thin film. In situ X-ray diffraction during heating can clarify partial crystallization Si (c-Si) in the multilayer at 450 K (= ), which corresponds to metal induced crystallization (MIC) from amorphous Si (a-Si) accompanying by Au diffusion. On further heating, a-Au started to crystallize at around 480 K (=Tc) and gradually grew up to 3.2 nm in radius, although the volume of c-Si was almost constant. Continuous heating caused crystal Au (c-Au) melting into liquid AuSi (l-AuSi) at 600 K (= ), which was lower than bulk eutectic temperature ( ). Due to the AuSi eutectic effect, reversible phase transition between liquid and solid occurred once temperature is larger than . Proportionally to the maximum temperatures at each cycles (673, 873 and 1073 K), both and Au crystallization temperature approaches to . Using a thermodynamic theory of the nanoparticle formation in the eutectic system, the relationship between and the nanoparticle size is explained.