Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2) columns over cities differ from region...Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2) columns over cities differ from region to region due to different emission sectoral compositions and human activities.In this study,we used satellite observed tropospheric NO_(2) column data to compare the longand short-term NO_(2) column density time series over cities in the United Sates(the U.S.),western Europe and China.The results showed that in all the targeted cities,the outbreak of the Corona Virus Disease in 2019(COVID-19)moved the December peak of the city-level NO_(2)columns forward to November and October or even earlier in 2020 and 2021.On weekly level,cities in the U.S.show the lowest NO_(2) columns ratio on weekend/work day,then come the western European cities,and a weak weekly pattern is seen in Chinese cities.For all the cites,we find a higher weekend/work day NO_(2) ratio in cold seasons than in warm seasons,indicating a higher contribution from NOx emission sectors of residential,industry and power plants in the warm seasons.In the long-term,NO_(2) columns over the U.S.and western European cities declined by a fraction twice that of the regional mean level from 2004 to 2021.In China,NO_(2) columns started to decrease since 2012,at a similar rate between the city and regional level.This work confirms the importance to quantify and control NOx emissions from cities.展开更多
基金jointly supported by the National Natural Science Foundation of China(No.22273093,No.41905018,No.21903080)the Ministry of Science and Technology of China(No.2022YFF0606500)。
基金Under the auspices of the National Natural Science Foundation of China(No.42375106,41805098)the National Key R&D Program of China(No.2023YFB3907500)。
文摘Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2) columns over cities differ from region to region due to different emission sectoral compositions and human activities.In this study,we used satellite observed tropospheric NO_(2) column data to compare the longand short-term NO_(2) column density time series over cities in the United Sates(the U.S.),western Europe and China.The results showed that in all the targeted cities,the outbreak of the Corona Virus Disease in 2019(COVID-19)moved the December peak of the city-level NO_(2)columns forward to November and October or even earlier in 2020 and 2021.On weekly level,cities in the U.S.show the lowest NO_(2) columns ratio on weekend/work day,then come the western European cities,and a weak weekly pattern is seen in Chinese cities.For all the cites,we find a higher weekend/work day NO_(2) ratio in cold seasons than in warm seasons,indicating a higher contribution from NOx emission sectors of residential,industry and power plants in the warm seasons.In the long-term,NO_(2) columns over the U.S.and western European cities declined by a fraction twice that of the regional mean level from 2004 to 2021.In China,NO_(2) columns started to decrease since 2012,at a similar rate between the city and regional level.This work confirms the importance to quantify and control NOx emissions from cities.