Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c...Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.展开更多
An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was develo...An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.展开更多
In order to restore the degraded ultrasonic C-scan image for testing surfacing inteoface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network...In order to restore the degraded ultrasonic C-scan image for testing surfacing inteoface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network is trained and a mapping relationship between the degraded and restored image is founded. The degraded C-scan image of Cu-Steel surfacing inteoface is processed by the trained network and improved image is obtained. The result shows that the method can effectively suppress the noise and deblur the defect edge in the image, and provide technique support for quality and reliability evaluation of the surfacing weld.展开更多
It is important to quantify the effect of the root diameter, the embedment length of the root and load speed on the soil-root interface mechanical properties for studying the root anchorage. The soilroot interface mec...It is important to quantify the effect of the root diameter, the embedment length of the root and load speed on the soil-root interface mechanical properties for studying the root anchorage. The soilroot interface mechanical properties can be obtained through the pullout force and root slippage curve(F-S curve). About 120 Pinus tabulaeformis single roots whose diameters ranged from 1 mm to 10 mm divided into 6 groups based on different root embedment length(50 mm, 100 mm and 150 mm) and different load velocity(10 mm·min^(-1), 50 mm·min^(-1), 100 mm·min^(-1) and 300 mm·min^(-1)) were investigated using the pullout method. This study aims to explore the mechanical properties of the soil-root interface in the real conditions using the pullout test method. The results showed two kinds of pullout test failure modes during the experimental process: breakage failure and pullout failure. The results showed that the roots were easier to be broken when the root diameter was smaller or the loading speed was larger. The relationship between the maximum anchorage force and root diameter was linear and the linearly dependent coefficient(R^2) was larger than 0.85. The anchorage force increased with the root embedment length. An increase of 10%^(-1)5% for the maximumanchorage force was found when load speed increased from 10 to 300 mm.min^(-1). The mean peak slippage of the root was from 13.81 to 35.79 mm when the load velocity varied from 10 to 300 mm.min^(-1). The study will be helpful for the design of slopes reinforced by vegetation and in predicting risk of uprooting of trees, and will have practical benefits for understanding the mechanism of landslide.展开更多
Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta...Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.展开更多
Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measur...Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measurement. Critical load and AE energy were employed to calculate interface fracture toughness. The critical point at which crack appears at the interface was determined by the HT. AE signals produced during total indentation test not only are used to investigate the interface cracking behavior by Fast Fourier Transform (FFT) and wavelet transforms but also supply the mechanical information. The result shows that the AE signals associated with coating plastic deformation during indentation are of a more continuous type with a lower characteristic frequency content (30 -60 kHz) , whereas the instantaneous relaxation associated with interface crack initiation produces burst type AE signals with a characteristic frequency in the range 70 - 200 kHz. The AE signals energy is concentrated on different scales for the coating plastic deformation, interface crack initiation and interface crack propagation. Interface fracture toughness calculated by AE energy was 1. 19 MPam1/2 close to 1.58 MPam1/2 calculated by critical load. It indicates that the acoustic emission energy is suitable to reflect the interface fracture toughness.展开更多
The adhesion and the fracture toughness of thermally grown oxide scales for pure nickel were investigated using Vickers indentation technique. The nickel samples were oxidised at 1200°C for 100h-600h. The crack l...The adhesion and the fracture toughness of thermally grown oxide scales for pure nickel were investigated using Vickers indentation technique. The nickel samples were oxidised at 1200°C for 100h-600h. The crack length induced by Vickers indentation test at NiO/Ni interface increases linearly with the incresing of the applied load in a logarithmic scale for each oxide thickness. There is a critical load Pc, when the applied load P>PC, the crack is produced at the oxide/metal interface. The critical load PC decreases with the increasing of the oxide thickness. Therefore, the relation between the critical load PC and the oxide thickness ho may be used as describing the adhesion of of thermally grown oxide scales. For pure nickel, the Pc-ho relation can be represented by the equation Pc = 761439e"°’°695’1" The fracture toughness in oxide and at the interface decrease with the increasing of the oxide thickness in equation K0 —1.02l4Ln(h0) + 7.3382 (in oxide) and KJ = 529.7In,,"**424 (at the interface). And there is a higher fracture toughness at the NiO/Ni interface. Therefore, for pure nickel, the oxide/metal interface is stronger than the oxide.展开更多
Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geolo...Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.展开更多
Screening tests for blood donations are based upon sensitivity, cost-effectiveness and their suitability for high-throughput testing. Enzyme immunoassay (EIAs) for hepatitis C virus (HCV) antibodies were the initial s...Screening tests for blood donations are based upon sensitivity, cost-effectiveness and their suitability for high-throughput testing. Enzyme immunoassay (EIAs) for hepatitis C virus (HCV) antibodies were the initial screening tests introduced. The ”first generation“ antibody EIAs detected seroconversion after unduly long infectious window period. Improved HCV antibody assays still had an infectious window period around 66 d. HCV core antigen EIAs shortened the window period considerably, but high costs did not lead to widespread acceptance. A fourth-generation HCV antigen and antibody assay (combination EIA) is more convenient as two infectious markers of HCV are detected in the same assay. Molecular testing for HCV-RNA utilizing nucleic acid amplification technology (NAT) is the most sensitive assay and shortens the window period to only 4 d. Implementation of NAT in many developed countries around the world has resulted in dramatic reductions in transfusion transmissible HCV and relative risk is now < 1 per million donations. However, HCV serology still continues to be retained as some donations are serology positive but NAT negative. In resource constrained countries HCV screening is highly variable, depending upon infrastructure, trained manpower and financial resource. Rapid tests which do not require instrumentation and are simple to perform are used in many small and remotely located blood centres. The sensitivity as compared to EIAs is less and wherever feasible HCV antibody EIAs are most frequently used screening assays. Efforts have been made to implement combined antigen-antibody assays and even NAT in some of these countries.展开更多
AIM:To evaluate the overlap of autoimmune hepatitis in hepatitis C virus(HCV)-infected patients with intense interface hepatitis.METHODS:Among 1759 patients with hepatitis C submitted to liver biopsy,92(5.2%) presente...AIM:To evaluate the overlap of autoimmune hepatitis in hepatitis C virus(HCV)-infected patients with intense interface hepatitis.METHODS:Among 1759 patients with hepatitis C submitted to liver biopsy,92(5.2%) presented intense interface hepatitis.These patients were evaluated regarding the presence of antinuclear antibody(ANA),anti-smooth muscle antibody(SMA) and anti-liver/kidney microsomal antibody(LKM-1),levels of γ-globulin and histological findings related to autoimmune hepatitis(plasma cell infiltrate and presence of rosettes).RESULTS:Among patients with hepatitis C and intense interface hepatitis there was a low prevalence of autoantibodies(ANA=12%,SMA=5%,LKM-1=0%) and the median γ-globulin level was within the normal range.Typical histological findings of autoimmune disease were observed in only two cases(2%).After applying the score for diagnosis of autoimmune hepatitis,only one patient was classified with a definitive diagnosis of autoimmune hepatitis.Since overlap with autoimmune hepatitis was not the explanation for the intense necroinflammatory activity in patients with chronic hepatitis C we sought to identify the variables associated with this finding.The presence of intense interface hepatitis was associated with more advanced age,both at the time of infection and at the time of the biopsy,and higher prevalence of blood transfusion and alcohol abuse.CONCLUSION:Although possible,overlap with autoimmune hepatitis is a very rare association in HCV-infected patients with intense interface hepatitis,an unusual presentation which seems to be related to other host variables.展开更多
Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the labo...Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.展开更多
Shearing behavior and failure mechanism of bolt-grout interface are of great significance for load transfer capacity and design of rock bolting system.In this paper,direct shear tests on bolt-grout interfaces under co...Shearing behavior and failure mechanism of bolt-grout interface are of great significance for load transfer capacity and design of rock bolting system.In this paper,direct shear tests on bolt-grout interfaces under constant normal load(CNL) conditions were conducted to investigate the effects of bolt profile(i.e.rib spacing and rib height) and grout mixture on the bolt-grout interface in terms of mechanical behaviors and failure modes.Test results showed that the peak shear strength and the deformation capacity of the bolt-grout interface are highly dependent on the bolt profile and grout mixture,suggesting that bolt performances can be optimized,which were unfortunately ignored in the previous studies.A new interface failure mode,i.e.'sheared-crush' mode,was proposed,which was characterized by progressive crush failure of the grout asperities between steel ribs during shearing.It was shown that the interface failure mode mainly depends on the normal stress level and rib spacing,compared with the rib height and grout mixture for the range of tested parameters in this study.展开更多
Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,an...Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,and their micro-morphology evolution in the SLCRB process are investigated with scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD).In the casting pool,initial aluminized coating is first generated on the copper strip surface,with the diffusion layer mainly consisting ofα(Al)+CuAl2and growing at high temperatures,with the maximum thickness of10μm.After sequent rolling below the kiss point,the diffusion layer is broken by severe elongation,which leads to an additional crack bond process with a fresh interface of virgin base metal.The average thickness is reduced from10to5μm.The reaction products,CuAl2,CuAl,and Cu9Al4,are dispersed along the rolling direction.Peeling and bending test results indicate that the fracture occurs in the aluminum substrate,and the morphology is a dimple pattern.No crack or separation is found at the bonding interface after90°-180°bending.The presented method provides an economical way to fabricate Cu/Al clad strip directly.展开更多
A unidirectional carbon/carbon composite (1D-C/C) of low bulk density with textures of poruns granular and isotropic carbons sharply manifests brittle fracture and does not display high pseudoplasticity as expected. ...A unidirectional carbon/carbon composite (1D-C/C) of low bulk density with textures of poruns granular and isotropic carbons sharply manifests brittle fracture and does not display high pseudoplasticity as expected. The results of transmisson electron microscopy (TEM) studies show that the strong interface of fiber-matrix should determine its fracture mode.展开更多
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a...Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.展开更多
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.42272310).
文摘Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.
基金supported by the Natural Resources Development Special Fund Project of Jiangsu Province(No.JSZRHYKJ202009)the Taishan Scholar Funds(No.tsqn 201812022)+2 种基金the Fundamental Research Funds for the Central Universities(No.202072001)the Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Beibu Gulf University(No.2021KF03)the National Natural Science Foundation of China(No.42176020).
文摘An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.
文摘In order to restore the degraded ultrasonic C-scan image for testing surfacing inteoface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network is trained and a mapping relationship between the degraded and restored image is founded. The degraded C-scan image of Cu-Steel surfacing inteoface is processed by the trained network and improved image is obtained. The result shows that the method can effectively suppress the noise and deblur the defect edge in the image, and provide technique support for quality and reliability evaluation of the surfacing weld.
基金supported by the Fundamental Research Funds for the Central Universities(No.YX2010-20)the Open Projects Foundation of Key Laboratory of Soil and Water Conservation & Desertification Combat (Beijing ForestryUniversity), Ministry of Education of P.R. China (No.201002) the National Natural Science Foundation of China (No. 31570708, No.30901162)
文摘It is important to quantify the effect of the root diameter, the embedment length of the root and load speed on the soil-root interface mechanical properties for studying the root anchorage. The soilroot interface mechanical properties can be obtained through the pullout force and root slippage curve(F-S curve). About 120 Pinus tabulaeformis single roots whose diameters ranged from 1 mm to 10 mm divided into 6 groups based on different root embedment length(50 mm, 100 mm and 150 mm) and different load velocity(10 mm·min^(-1), 50 mm·min^(-1), 100 mm·min^(-1) and 300 mm·min^(-1)) were investigated using the pullout method. This study aims to explore the mechanical properties of the soil-root interface in the real conditions using the pullout test method. The results showed two kinds of pullout test failure modes during the experimental process: breakage failure and pullout failure. The results showed that the roots were easier to be broken when the root diameter was smaller or the loading speed was larger. The relationship between the maximum anchorage force and root diameter was linear and the linearly dependent coefficient(R^2) was larger than 0.85. The anchorage force increased with the root embedment length. An increase of 10%^(-1)5% for the maximumanchorage force was found when load speed increased from 10 to 300 mm.min^(-1). The mean peak slippage of the root was from 13.81 to 35.79 mm when the load velocity varied from 10 to 300 mm.min^(-1). The study will be helpful for the design of slopes reinforced by vegetation and in predicting risk of uprooting of trees, and will have practical benefits for understanding the mechanism of landslide.
基金supported jointly by the National Basic Research Program of China("973"Program)(No2014CB046200)the National Science Foundation of Jiangsu Province(No.BK2014059)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)
文摘Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.
文摘Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measurement. Critical load and AE energy were employed to calculate interface fracture toughness. The critical point at which crack appears at the interface was determined by the HT. AE signals produced during total indentation test not only are used to investigate the interface cracking behavior by Fast Fourier Transform (FFT) and wavelet transforms but also supply the mechanical information. The result shows that the AE signals associated with coating plastic deformation during indentation are of a more continuous type with a lower characteristic frequency content (30 -60 kHz) , whereas the instantaneous relaxation associated with interface crack initiation produces burst type AE signals with a characteristic frequency in the range 70 - 200 kHz. The AE signals energy is concentrated on different scales for the coating plastic deformation, interface crack initiation and interface crack propagation. Interface fracture toughness calculated by AE energy was 1. 19 MPam1/2 close to 1.58 MPam1/2 calculated by critical load. It indicates that the acoustic emission energy is suitable to reflect the interface fracture toughness.
文摘The adhesion and the fracture toughness of thermally grown oxide scales for pure nickel were investigated using Vickers indentation technique. The nickel samples were oxidised at 1200°C for 100h-600h. The crack length induced by Vickers indentation test at NiO/Ni interface increases linearly with the incresing of the applied load in a logarithmic scale for each oxide thickness. There is a critical load Pc, when the applied load P>PC, the crack is produced at the oxide/metal interface. The critical load PC decreases with the increasing of the oxide thickness. Therefore, the relation between the critical load PC and the oxide thickness ho may be used as describing the adhesion of of thermally grown oxide scales. For pure nickel, the Pc-ho relation can be represented by the equation Pc = 761439e"°’°695’1" The fracture toughness in oxide and at the interface decrease with the increasing of the oxide thickness in equation K0 —1.02l4Ln(h0) + 7.3382 (in oxide) and KJ = 529.7In,,"**424 (at the interface). And there is a higher fracture toughness at the NiO/Ni interface. Therefore, for pure nickel, the oxide/metal interface is stronger than the oxide.
基金supported by the Land and Liveability National Innovation Challenge under L2 NIC Award No. L2NICCFP1-2013-1
文摘Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.
文摘Screening tests for blood donations are based upon sensitivity, cost-effectiveness and their suitability for high-throughput testing. Enzyme immunoassay (EIAs) for hepatitis C virus (HCV) antibodies were the initial screening tests introduced. The ”first generation“ antibody EIAs detected seroconversion after unduly long infectious window period. Improved HCV antibody assays still had an infectious window period around 66 d. HCV core antigen EIAs shortened the window period considerably, but high costs did not lead to widespread acceptance. A fourth-generation HCV antigen and antibody assay (combination EIA) is more convenient as two infectious markers of HCV are detected in the same assay. Molecular testing for HCV-RNA utilizing nucleic acid amplification technology (NAT) is the most sensitive assay and shortens the window period to only 4 d. Implementation of NAT in many developed countries around the world has resulted in dramatic reductions in transfusion transmissible HCV and relative risk is now < 1 per million donations. However, HCV serology still continues to be retained as some donations are serology positive but NAT negative. In resource constrained countries HCV screening is highly variable, depending upon infrastructure, trained manpower and financial resource. Rapid tests which do not require instrumentation and are simple to perform are used in many small and remotely located blood centres. The sensitivity as compared to EIAs is less and wherever feasible HCV antibody EIAs are most frequently used screening assays. Efforts have been made to implement combined antigen-antibody assays and even NAT in some of these countries.
基金Supported by CAPES research support agency, Brazil
文摘AIM:To evaluate the overlap of autoimmune hepatitis in hepatitis C virus(HCV)-infected patients with intense interface hepatitis.METHODS:Among 1759 patients with hepatitis C submitted to liver biopsy,92(5.2%) presented intense interface hepatitis.These patients were evaluated regarding the presence of antinuclear antibody(ANA),anti-smooth muscle antibody(SMA) and anti-liver/kidney microsomal antibody(LKM-1),levels of γ-globulin and histological findings related to autoimmune hepatitis(plasma cell infiltrate and presence of rosettes).RESULTS:Among patients with hepatitis C and intense interface hepatitis there was a low prevalence of autoantibodies(ANA=12%,SMA=5%,LKM-1=0%) and the median γ-globulin level was within the normal range.Typical histological findings of autoimmune disease were observed in only two cases(2%).After applying the score for diagnosis of autoimmune hepatitis,only one patient was classified with a definitive diagnosis of autoimmune hepatitis.Since overlap with autoimmune hepatitis was not the explanation for the intense necroinflammatory activity in patients with chronic hepatitis C we sought to identify the variables associated with this finding.The presence of intense interface hepatitis was associated with more advanced age,both at the time of infection and at the time of the biopsy,and higher prevalence of blood transfusion and alcohol abuse.CONCLUSION:Although possible,overlap with autoimmune hepatitis is a very rare association in HCV-infected patients with intense interface hepatitis,an unusual presentation which seems to be related to other host variables.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.YX2010-20)the National Natural Science Foundation of China(No.31570708,No.30901162)the Open Projects Foundation of Key Laboratory of Soil and Water Conservation&Desertification Combat(Beijing Forestry University),Ministry of Education of China(No.201002)
文摘Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.
基金supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the National Natural Science Foundation of China(Grant No.51279201)+1 种基金Special project of the National Natural Science Foundation of China(Grant No.41941018)The partial support from the Youth Innovation Promotion Association,Chinese Academy of Sciences。
文摘Shearing behavior and failure mechanism of bolt-grout interface are of great significance for load transfer capacity and design of rock bolting system.In this paper,direct shear tests on bolt-grout interfaces under constant normal load(CNL) conditions were conducted to investigate the effects of bolt profile(i.e.rib spacing and rib height) and grout mixture on the bolt-grout interface in terms of mechanical behaviors and failure modes.Test results showed that the peak shear strength and the deformation capacity of the bolt-grout interface are highly dependent on the bolt profile and grout mixture,suggesting that bolt performances can be optimized,which were unfortunately ignored in the previous studies.A new interface failure mode,i.e.'sheared-crush' mode,was proposed,which was characterized by progressive crush failure of the grout asperities between steel ribs during shearing.It was shown that the interface failure mode mainly depends on the normal stress level and rib spacing,compared with the rib height and grout mixture for the range of tested parameters in this study.
基金Project(51474189)supported by the National Natural Science Foundation of ChinaProject(QN2015214)supported by the Educational Commission of Hebei Province,China
文摘Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,and their micro-morphology evolution in the SLCRB process are investigated with scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD).In the casting pool,initial aluminized coating is first generated on the copper strip surface,with the diffusion layer mainly consisting ofα(Al)+CuAl2and growing at high temperatures,with the maximum thickness of10μm.After sequent rolling below the kiss point,the diffusion layer is broken by severe elongation,which leads to an additional crack bond process with a fresh interface of virgin base metal.The average thickness is reduced from10to5μm.The reaction products,CuAl2,CuAl,and Cu9Al4,are dispersed along the rolling direction.Peeling and bending test results indicate that the fracture occurs in the aluminum substrate,and the morphology is a dimple pattern.No crack or separation is found at the bonding interface after90°-180°bending.The presented method provides an economical way to fabricate Cu/Al clad strip directly.
文摘A unidirectional carbon/carbon composite (1D-C/C) of low bulk density with textures of poruns granular and isotropic carbons sharply manifests brittle fracture and does not display high pseudoplasticity as expected. The results of transmisson electron microscopy (TEM) studies show that the strong interface of fiber-matrix should determine its fracture mode.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-BR-10-007A and FRF-AS-09-001A)the National Natural Science Foundation of China (10872104)
文摘Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.