We prove that two parameter smooth continuous martingales have ∞-modification and establish a Doob’s inequality in terms of(p,r)-capacity for two parameter smooth martingales.
We study in fairly general measure spaces (X,μ) the (non-linear) potential theory of L^p sub-Markovian semigroups which are given by kernels having a density with respect to the underlying measure. In terms of ma...We study in fairly general measure spaces (X,μ) the (non-linear) potential theory of L^p sub-Markovian semigroups which are given by kernels having a density with respect to the underlying measure. In terms of mapping properties of the operators we provide sufficient conditions for the existence (and regularity) of such densities. We give various (dual) representations for several associated capacities and, in the corresponding abstract Bessel potential spaces, we study the role of the truncation property. Examples are discussed in the case of R^n where abstract Bessel potential spaces can be identified with concrete function spaces.展开更多
文摘We prove that two parameter smooth continuous martingales have ∞-modification and establish a Doob’s inequality in terms of(p,r)-capacity for two parameter smooth martingales.
文摘We study in fairly general measure spaces (X,μ) the (non-linear) potential theory of L^p sub-Markovian semigroups which are given by kernels having a density with respect to the underlying measure. In terms of mapping properties of the operators we provide sufficient conditions for the existence (and regularity) of such densities. We give various (dual) representations for several associated capacities and, in the corresponding abstract Bessel potential spaces, we study the role of the truncation property. Examples are discussed in the case of R^n where abstract Bessel potential spaces can be identified with concrete function spaces.