Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand...Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.展开更多
BACKGROUND Human-derived mesenchymal stromal cells have been shown to improve cognitive function following experimental stroke.The activity of exosomes has been verified to be comparable to the therapeutic effects of ...BACKGROUND Human-derived mesenchymal stromal cells have been shown to improve cognitive function following experimental stroke.The activity of exosomes has been verified to be comparable to the therapeutic effects of mesenchymal stromal cells.However,the effects of exosomes derived from human umbilical cord mesenchymal stem cells(HUC-MSCs)(ExoCtrl)on post-stroke cognitive impairment(PSCI)have rarely been reported.Moreover,whether exosomes derived from C-C chemokine receptor type 2(CCR2)-overexpressing HUC-MSCs(ExoCCR2)can enhance the therapeutic effects on PSCI and the possible underlying mechanisms have not been studied.AIM To investigate the effects of ExoCtrl on PSCI and whether ExoCCR2 can enhance therapeutic effects on PSCI.METHODS Transmission electron microscopy,qNano®particles analyzer,and Western blotting were employed to determine the morphology and CCR2 expression of ExoCtrl or ExoCCR2.ELISA was used to study the binding capacity of exosomes to CC chemokine ligand 2(CCL2)in vivo.After the intravenous injection of ExoCtrl or ExoCCR2 into experimental rats,the effect of ExoCtrl and ExoCCR2 on PSCI was assessed by Morris water maze.Remyelination and oligodendrogenesis were analyzed by Western blotting and immunofluorescence microscopy.QRT-PCR and immunofluorescence microscopy were conducted to compare the microglia/macrophage polarization.The infiltration and activation of hematogenous macrophages were analyzed by Western blotting and transwell migration analysis.RESULTS CCR2-overexpressing HUC-MSCs loaded the CCR2 receptor into their exosomes.The morphology and diameter distribution between ExoCtrl and ExoCCR2 showed no significant difference.ExoCCR2 bound significantly to CCL2 but ExoCtrl showed little CCL2 binding.Although both ExoCCR2 and ExoCtrl showed beneficial effects on PSCI,oligodendrogenesis,remyelination,and microglia/macrophage polarization,ExoCCR2 exhibited a significantly superior beneficial effect.We also found that ExoCCR2 could suppress the CCL2-induced macrophage migration and activation in vivo and in vitro,compared with ExoCtrl treated group.CONCLUSION CCR2 over-expression enhanced the therapeutic effects of exosomes on the experimental PSCI by promoting M2 microglia/macrophage polarization,enhancing oligodendrogenesis and remyelination.These therapeutic effects are likely through suppressing the CCL2-induced hematogenous macrophage migration and activation.Key words:Cognitive impairment;Stroke;Exosomes;C-C chemokine receptor type 2;Microglia/macrophage polarization;Remyelination.展开更多
Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation.Overproduced chemokines are responsible for the migratory process of the leukoc...Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation.Overproduced chemokines are responsible for the migratory process of the leukocytes,but the regulatory mechanism underlying the production of chemokines from resident cells of the spinal cord has not been fully elucidated.We examined the protein levels of macrophage migration inhibitory factor and chemokine C-C motif chemokine ligand 2 in a spinal cord contusion model at different time points following spinal cord injury.The elevation of macrophage migration inhibitory factor at the lesion site coincided with the increase of chemokine C-C motif chemokine ligand 2 abundance in astrocytes.Stimulation of primary cultured astrocytes with different concentrations of macrophage migration inhibitory factor recombinant protein induced chemokine C-C motif chemokine ligand 2 production from the cells,and the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine attenuated the stimulatory effect.Further investigation into the underlying mechanism on macrophage migration inhibitory factor-mediated astrocytic production of chemokine C-C motif chemokine ligand 2 revealed that macrophage migration inhibitory factor activated intracellular JNK signaling through binding with CD74 receptor.Administration of the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine following spinal cord injury resulted in the reduction of chemokine C-C motif chemokine ligand 2-recruited microglia/macrophages at the lesion site and remarkably improved the hindlimb locomotor function of rats.Our results have provided insights into the functions of astrocyte-activated chemokines in the recruitment of leukocytes and may be beneficial to develop interventions targeting chemokine C-C motif chemokine ligand 2 for neuroinflammation after spinal cord injury.展开更多
BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its me...BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.展开更多
Atypical chemokine receptors have recently emerged as important molecular players in health and diseases; they affect chemokine availability and function and impact a multitude of pathophysiological events, including ...Atypical chemokine receptors have recently emerged as important molecular players in health and diseases; they affect chemokine availability and function and impact a multitude of pathophysiological events, including the tumorigenesis process. This family of atypical receptors comprises five members: ACKR1/DARC, ACKR2/D6,ACKR3/CXCR7, ACKR4/CCRL1, and ACKR5/CCRL2. This work evaluated the differential expression of these receptors in prostate cancer using quantitative PCR. Further evaluation of CCRL2 at the protein level confirmed its overexpression in a metastatic cell line and in malignant prostatic tissues from patients. CCRL2, a presumed member of the atypical chemokine receptor family, plays a key role in lung dendritic cell trafficking to peripheral lymph nodes.Recent studies have reported the expression of CCRL2 in different human cancer cell lines and tissues. However, its function and expression in prostate cancer has not been previously addressed.展开更多
Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migra...Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migration of DCs both in vitro and in vivo. Exposure of DCs to clinical concentrations of CsA neither induces apoptosis nor alters development but does impair cytokine secretion, chemokine receptor expression, and migration. In vitro, CsA impairs the migration of mouse bone marrow-derived DCs toward macrophage inflammatory protein-3beta (MIP-3beta) and induces them to retain responsiveness to MIP-1alpha after lipopolysaccharide (LPS)-stimulated DC maturation, while in vivo administration of CsA inhibits the migration of DCs out of skin and into the secondary lymphoid organs. CsA impairs chemokine receptor and cyclooxygenase-2 (COX-2) expression normally triggered in LPS-stimulated DCs; administration of exogenous prostaglandin E2 (PGE2) reverses the effects of CsA on chemokine receptor expression and DC migration. Inhibition of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway signaling by CsA may be responsible for the CsA-mediated effects on the regulation of chemokine receptor and cyclooxygenase-2 (COX-2) expression. Impairment of DC migration due to inhibition of PGE2 production and regulation of chemokine receptor expression may contribute, in part, to CsA-mediated immunosuppression.展开更多
基金supported by the National Natural Science Foundation of China(Key Program),No.11932013the National Natural Science Foundation of China(General Program),No.82272255+2 种基金Armed Police Force High-Level Science and Technology Personnel ProjectThe Armed Police Force Focuses on Supporting Scientific and Technological Innovation TeamsKey Project of Tianjin Science and Technology Plan,No.20JCZDJC00570(all to XC)。
文摘Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
基金the National Natural Science Foundation of China,No.81871847 and No.81672261
文摘BACKGROUND Human-derived mesenchymal stromal cells have been shown to improve cognitive function following experimental stroke.The activity of exosomes has been verified to be comparable to the therapeutic effects of mesenchymal stromal cells.However,the effects of exosomes derived from human umbilical cord mesenchymal stem cells(HUC-MSCs)(ExoCtrl)on post-stroke cognitive impairment(PSCI)have rarely been reported.Moreover,whether exosomes derived from C-C chemokine receptor type 2(CCR2)-overexpressing HUC-MSCs(ExoCCR2)can enhance the therapeutic effects on PSCI and the possible underlying mechanisms have not been studied.AIM To investigate the effects of ExoCtrl on PSCI and whether ExoCCR2 can enhance therapeutic effects on PSCI.METHODS Transmission electron microscopy,qNano®particles analyzer,and Western blotting were employed to determine the morphology and CCR2 expression of ExoCtrl or ExoCCR2.ELISA was used to study the binding capacity of exosomes to CC chemokine ligand 2(CCL2)in vivo.After the intravenous injection of ExoCtrl or ExoCCR2 into experimental rats,the effect of ExoCtrl and ExoCCR2 on PSCI was assessed by Morris water maze.Remyelination and oligodendrogenesis were analyzed by Western blotting and immunofluorescence microscopy.QRT-PCR and immunofluorescence microscopy were conducted to compare the microglia/macrophage polarization.The infiltration and activation of hematogenous macrophages were analyzed by Western blotting and transwell migration analysis.RESULTS CCR2-overexpressing HUC-MSCs loaded the CCR2 receptor into their exosomes.The morphology and diameter distribution between ExoCtrl and ExoCCR2 showed no significant difference.ExoCCR2 bound significantly to CCL2 but ExoCtrl showed little CCL2 binding.Although both ExoCCR2 and ExoCtrl showed beneficial effects on PSCI,oligodendrogenesis,remyelination,and microglia/macrophage polarization,ExoCCR2 exhibited a significantly superior beneficial effect.We also found that ExoCCR2 could suppress the CCL2-induced macrophage migration and activation in vivo and in vitro,compared with ExoCtrl treated group.CONCLUSION CCR2 over-expression enhanced the therapeutic effects of exosomes on the experimental PSCI by promoting M2 microglia/macrophage polarization,enhancing oligodendrogenesis and remyelination.These therapeutic effects are likely through suppressing the CCL2-induced hematogenous macrophage migration and activation.Key words:Cognitive impairment;Stroke;Exosomes;C-C chemokine receptor type 2;Microglia/macrophage polarization;Remyelination.
基金supported by the China Postdoctoral Science Foundation,No.2020M681689(to YMH)the Basic Scientific Research Projects of Nantong,Nos.JC2020015(to HX)and JC2020041(to YMH)。
文摘Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation.Overproduced chemokines are responsible for the migratory process of the leukocytes,but the regulatory mechanism underlying the production of chemokines from resident cells of the spinal cord has not been fully elucidated.We examined the protein levels of macrophage migration inhibitory factor and chemokine C-C motif chemokine ligand 2 in a spinal cord contusion model at different time points following spinal cord injury.The elevation of macrophage migration inhibitory factor at the lesion site coincided with the increase of chemokine C-C motif chemokine ligand 2 abundance in astrocytes.Stimulation of primary cultured astrocytes with different concentrations of macrophage migration inhibitory factor recombinant protein induced chemokine C-C motif chemokine ligand 2 production from the cells,and the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine attenuated the stimulatory effect.Further investigation into the underlying mechanism on macrophage migration inhibitory factor-mediated astrocytic production of chemokine C-C motif chemokine ligand 2 revealed that macrophage migration inhibitory factor activated intracellular JNK signaling through binding with CD74 receptor.Administration of the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine following spinal cord injury resulted in the reduction of chemokine C-C motif chemokine ligand 2-recruited microglia/macrophages at the lesion site and remarkably improved the hindlimb locomotor function of rats.Our results have provided insights into the functions of astrocyte-activated chemokines in the recruitment of leukocytes and may be beneficial to develop interventions targeting chemokine C-C motif chemokine ligand 2 for neuroinflammation after spinal cord injury.
基金Supported by the National Natural Science Foundation of China,No.81570543 and No.81560104
文摘BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.
文摘Atypical chemokine receptors have recently emerged as important molecular players in health and diseases; they affect chemokine availability and function and impact a multitude of pathophysiological events, including the tumorigenesis process. This family of atypical receptors comprises five members: ACKR1/DARC, ACKR2/D6,ACKR3/CXCR7, ACKR4/CCRL1, and ACKR5/CCRL2. This work evaluated the differential expression of these receptors in prostate cancer using quantitative PCR. Further evaluation of CCRL2 at the protein level confirmed its overexpression in a metastatic cell line and in malignant prostatic tissues from patients. CCRL2, a presumed member of the atypical chemokine receptor family, plays a key role in lung dendritic cell trafficking to peripheral lymph nodes.Recent studies have reported the expression of CCRL2 in different human cancer cell lines and tissues. However, its function and expression in prostate cancer has not been previously addressed.
文摘Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migration of DCs both in vitro and in vivo. Exposure of DCs to clinical concentrations of CsA neither induces apoptosis nor alters development but does impair cytokine secretion, chemokine receptor expression, and migration. In vitro, CsA impairs the migration of mouse bone marrow-derived DCs toward macrophage inflammatory protein-3beta (MIP-3beta) and induces them to retain responsiveness to MIP-1alpha after lipopolysaccharide (LPS)-stimulated DC maturation, while in vivo administration of CsA inhibits the migration of DCs out of skin and into the secondary lymphoid organs. CsA impairs chemokine receptor and cyclooxygenase-2 (COX-2) expression normally triggered in LPS-stimulated DCs; administration of exogenous prostaglandin E2 (PGE2) reverses the effects of CsA on chemokine receptor expression and DC migration. Inhibition of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway signaling by CsA may be responsible for the CsA-mediated effects on the regulation of chemokine receptor and cyclooxygenase-2 (COX-2) expression. Impairment of DC migration due to inhibition of PGE2 production and regulation of chemokine receptor expression may contribute, in part, to CsA-mediated immunosuppression.