AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermo...AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)] and flow cytometry(Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC790l cells in G0/G1 phase,but a reduced population in S phase following thermotherapy for 1 or 2 h,compared to untreated cells(P < 0.05).The increased number of SGC-790l cells in G0/G1 phase was consistent with induced apoptosis(flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group(46.5% ± 0.23%,39.9% ± 0.53%,56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay(48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment(P < 0.01),and peaked at 2 h.A similar pattern was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased.Furthermore,the JNK specific inhibitor,SP600125,suppressed p-JNK,Bax and caspase-3 at the protein level in SGC790l cells following thermotherapy,compared to mock-inhibitor treatment,which was in line with the decreased rate of apoptosis.The expression of Bcl-2 was consistent with thermotherapy alone.CONCLUSION:Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels,and up-regulated the expression of Bax and caspase-3 proteins.Bcl-2 may play a protective role during thermotherapy.Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.展开更多
Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positi...Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway.展开更多
The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosp...The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.展开更多
The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, inc...The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.展开更多
Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvesse...Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine the activity of extracellular- signal regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) using antibodies against ERK, JNK and diphosphorylated ERK and JNK. Results: At lh reperfusion post-ischemia, JNK reached its peak activity while ERK was undergoing a sharp inactivation (P 〈 0.05). The level of diphosphorylated JNK was significantly reduced but the sharp inactivation of ERK was visibly reversed (P 〈 0.05) by the sphingomyelinase inhibitor. Conclusion: The ceramide signaling pathway is up-regulated through sphingomyelin hydrolysis in brain ischemia, promoting JNK activation and suppressing ERK activation, culminating in the ischemic lesion.展开更多
Pancreatic cancer is a dismal disease with high incidence and poor survival rates.With the aim to improve overall survival of pancreatic cancer patients,new therapeutic approaches are urgently needed.Protein kinases a...Pancreatic cancer is a dismal disease with high incidence and poor survival rates.With the aim to improve overall survival of pancreatic cancer patients,new therapeutic approaches are urgently needed.Protein kinases are key regulatory players in basically all stages of development,maintaining physiologic functions but also being involved in pathogenic processes.c-Jun N-terminal kinases(JNK)and p38 kinases,representatives of the mitogen-activated protein kinases,as well as the casein kinase 1(CK1)family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors,DNA damage,and others.In their physiologic roles,they are responsible for the regulation of cell cycle progression,cell proliferation and differentiation,and apoptosis.Dysregulation of the underlying pathways consequently has been identified in various cancer types,including pancreatic cancer.Pharmacological targeting of those pathways has been the field of interest for several years.While success in earlier studies was limited due to lacking specificity and off-target effects,more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results.Consequently,targeting of JNK,p38,and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases.However,further studies are warranted,especially involving in vivo investigation and clinical trials,in order to advance inhibition of stress-activated kinases to the field of translational medicine.展开更多
Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods...Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.展开更多
AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry wa...AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcriptionpolymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.展开更多
Background:In sepsis,vitamin D binding protein(VDBP)has been shown to be low-expressed.The current study examined the relationship between serum VDBP level and liver injury in sepsis patients,as well as in a mouse mod...Background:In sepsis,vitamin D binding protein(VDBP)has been shown to be low-expressed.The current study examined the relationship between serum VDBP level and liver injury in sepsis patients,as well as in a mouse model for sepsis and in cultured liver epithelial cell line exposed to lipopolysaccharide(LPS).Methods:The human study included 78 sepsis patients and 50 healthy volunteers.Sepsis patients were categorized into sepsis survivor group(n=43)and sepsis non-survivor group(n=35)based on 28-day mortality for data analysis.Adult male C57BL/6 mice were subjected to cecal ligation and puncture(CLP).Serum samples were collected on day 1,3,5 and 7 to determine the levels of VDBP,25-hydroxyvitamin D[25(OH)D_(3)],1,25-dihydroxyvitamin D[1,25(OH)_(2)D_(3)],interleukin-6(IL-6)and tumor necrosis factor alpha(TNF-α).Potential protective effects of VDBP overexpression against LPS-induced liver damage were examined in cultured THLE2 cells.Results:Serum levels of VDBP,25(OH)D_(3),and 1,25(OH)_(2)D_(3)were significantly lower in sepsis patients vs.the healthy control(P<0.001),as well as in the sepsis non-survivor group vs.the sepsis survivor group(P<0.001,P=0.0338,or P=0.0013,respectively).Lower serum VDBP level was associated with higher Acute Physiology and Chronic Health Evaluation(APACHE)II score(r=−0.2565,P=0.0234)and Sequential Organ Failure Assessment score(r=−0.3522,P=0.0016),but lower serum albumin(ALB,r=0.4628,P<0.001)and total protein(TP,r=0.263,P=0.02).In CLP mice,there was a 5-day period of serum VDBP reduction,followed by return towards the baseline on day 7.VDBP was also decreased in LPS-treated THLE2 cells(P<0.001).VDBP overexpression reduced LPS-induced THLE2 damage.Reduced damage was associated with decreased oxidative stress and inactivation of the c-Jun N-terminal kinase signaling pathway.Conclusion:VDBP may be protective against sepsis-induced liver injury.展开更多
Extracellular aggregation of amyloid-beta(Aβ)and intracellular tau tangles are two major pathogenic hallmarks and critical factors of Alzheimer’s disease.A linear interaction between Aβand tau protein has been char...Extracellular aggregation of amyloid-beta(Aβ)and intracellular tau tangles are two major pathogenic hallmarks and critical factors of Alzheimer’s disease.A linear interaction between Aβand tau protein has been characterized in several models.Aβinduces tau hyperphosphorylation through a complex mechanism;however,the master regulators involved in this linear process are still unclear.In our study with Drosophila melanogaster,we found that Aβregulated tau hyperphosphorylation and toxicity by activating c-Jun N-terminal kinase.Importantly,Aβtoxicity was dependent on tau hyperphosphorylation,and flies with hypophosphorylated tau were insulated against Aβ-induced toxicity.Strikingly,tau accumulation reciprocally interfered with Aβdegradation and correlated with the reduction in mRNA expression of genes encoding Aβ-degrading enzymes,including dNep1,dNep3,dMmp2,dNep4,and dIDE.Our results indicate that Aβand tau protein work synergistically to further accelerate Alzheimer’s disease progression and may be considered as a combined target for future development of Alzheimer’s disease therapeutics.展开更多
BACKGROUND: Recent studies have shown that the selective inhibitor of c-Jun N-terminal kinases (JNKs) signaling pathway, SP600125, exhibits neuronal protective effects in a rat model of brain ischemia/reperfusion. ...BACKGROUND: Recent studies have shown that the selective inhibitor of c-Jun N-terminal kinases (JNKs) signaling pathway, SP600125, exhibits neuronal protective effects in a rat model of brain ischemia/reperfusion. OBJECTIVE: To determine the mechanisms of neuroprotective effects of SP600125 in a rat model of brain ischemia/reperfusion, and determine the role of the JNK signaling pathway in SP600125-induced effects. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Animal Experiment Center, Medical School of Xi'an Jiaotong University from June 2007 to September 2008. MATERIALS: SP600125 was provided by Biosource, USA; rabbit anti-phospho-JNK (Thr183/Tyr185) polyclonal antibody from Cell Signaling Technology, USA; rabbit anti-X-ray repair cross-complementing protein 1 (XRCC1) and anti-Ku70 polyclonal antibodies from Santa Cruz Biotechnology, USA; and TUNEL kit from Beijing Huamei Biology, China. METHODS: A total of 108 male, 4-month-old, Sprague Dawley rats were randomly assigned to three groups, with 36 rats per group. The sham operation group and ischemia/reperfusion group (I/R group) were intracerebroventricularly injected with 10 μL 1% DMSO. The SP600125-treated group (pre-SP group) was given 10 μL SP600125 (3 μg/μL). Thirty minutes later, brain ischemia was induced in the I/R and pre-SP groups using the four-vessel occlusion method. Specifically, whole brain ischemia was induced for 6 minutes, and the clips were released to restore carotid artery blood flow. Rats from each group were observed at 2, 6, 12, 24, 48, and 72 hours, with 6 rats for each time point. The sham operation group was treated with the same surgical exposure procedures, with exception of occlusion of the carotid artery. MAIN OUTCOME MEASURES: Hematoxylin-eosin staining was used to observe neuronal survival in the hippocampal CA1 region, TUNEL was used to detect apoptosis in the hippocampal CA1 region, and immunohistochemistry was used to detect expression of phospho-JNK, XRCC1, and Ku70. RESULTS: Following brain ischemia/reperfusion, neuronal survival significantly decreased, and the number of apoptotic cells significantly increased (P 〈 0.01). Compared with the I/R group, neuronal survival significantly increased in the pre-SP group, and the number of apoptotic cells significantly decreased (P 〈 0.01). Expression of phospho-JNK increased, and XRCC1 and Ku70 significantly decreased (P 〈 0.05) following ischemia/reperfusion. Compared with the I/R group, expression of phospho-JNK decreased, and XRCC1 and Ku70 significantly increased in the pre-SP group (P 〈 0.05). Correlation analysis revealed an inverse correlation between phospho-JNK gray value and XRCC1 and Ku70 gray values in the hippocampal CA1 region (r = -0.983, -0.953, P 〈 0.01). CONCLUSION: SP600125 treatment decreased apoptosis induced by global brain ischemia/reperfusion in the rat hippocampal CA1 region. Results suggested that the neuroprotective effects were due to inhibited phosphorylation of JNK and reduced down-regulation of XRCC1 and Ku70.展开更多
OBJECTIVE To investigate the hepato-protective mechanism of thymoquinone(TQ) on the development of acetaminophen(APAP)-induced liver injury.METHODS In vivo,male kunming mice were injected with a single dose of 300 mg&...OBJECTIVE To investigate the hepato-protective mechanism of thymoquinone(TQ) on the development of acetaminophen(APAP)-induced liver injury.METHODS In vivo,male kunming mice were injected with a single dose of 300 mg·kg^(-1) APAP.Some mice were pretreated with TQ(5 or 20 mg·kg^(-1))and N-acetylcysteine(NAC,300 mg·kg^(-1))2 h before APAP injection.Mice were euthanized at 2 h,6 h,12 h after APAP treatment.In vitro,human Chang liver cells were incubated with 3.125,6.25 or 12.5μmol·L^(-1) TQ,10μmol·L^(-1) SP600125 and 500μmol·L^(-1) AICAR in the presence of APAP for 24 h.Cell viability were analyzed by MTT assay,protein expressions were assessed by Western blot.RESULTS TQ pretreatment significantly reduced serum aminotransferase and increased hepatic glutathione(GSH)and glutathione peroxidase(GSH-PX)activities,while significantly inhibited interleukin-1β(IL^(-1)β)levels.TQ significantly inhibited c-Jun N-terminal kinase(JNK),extracellular signal regulated kinase(ERK)and P38 phosphorylation induced by APAP.Moreover,TQ inhibited phosphatidylinositol 3-kinase(PI3K)/mammalian target of rapamycin(m TOR)signaling activation and activated AMPK phosphorylation induced by APAP.In addition,TQ inhibited signal transducer and activator of transcription 3(STAT3)phosphorylation on APAP-induced liver injury.In vitro,APAP enhanced JNK phosphorylation and attenuated AMPK phosphorylation in Chang liver cel s,and these effects were blocked by pretreatment with TQ,SP600125(JNK inhibitor)and AICAR(AMPK activator).CONCLUSION Our findings suggest that TQ may actively prevent APAP-induced liver injury,and this effect may be mediated by JNK and AMPK signaling pathways.展开更多
Background:Hepatic ischemia-reperfusion injury(HIRI)remains a common complication during liver transplantation(LT)in patients.As a key downstream effector of the Hippo pathway,Yes-associated protein(YAP)has been repor...Background:Hepatic ischemia-reperfusion injury(HIRI)remains a common complication during liver transplantation(LT)in patients.As a key downstream effector of the Hippo pathway,Yes-associated protein(YAP)has been reported to be involved in various physiological and pathological processes.However,it remains elusive whether and how YAP may control autophagy activation during ischemia-reperfusion.Methods:Human liver tissues from patients who had undergone LT were obtained to evaluate the correlation between YAP and autophagy activation.Both an in vitro hepatocyte cell line and in vivo liver-specific YAP knockdown mice were used to establish the hepatic ischemia-reperfusion models to determine the role of YAP in the activation of autophagy and the mechanism of regulation.Results:Autophagy was activated in the post-perfusion liver grafts during LT in patients,and the expression of YAP positively correlated with the autophagic level of hepatocytes.Liver-specific knockdown of YAP inhibited hepatocytes autophagy upon hypoxia-reoxygenation and HIRI(P<0.05).YAP deficiency aggravated HIRI by promoting the apoptosis of hepatocytes both in the in vitro and in vivo models(P<0.05).Attenuated HIRI by overexpression of YAP was diminished after the inhibition of autophagy with 3-methyladenine.In addition,inhibiting autophagy activation by YAP knockdown exacerbated mitochondrial damage through increasing reactive oxygen species(P<0.05).Moreover,the regulation of autophagy by YAP during HIRI was mediated by AP1(c-Jun)N-terminal kinase(JNK)signaling through binding to the transcriptional enhanced associate domain(TEAD).Conclusions:YAP protects against HIRI by inducing autophagy via JNK signaling that suppresses the apoptosis of hepatocytes.Targeting Hippo(YAP)-JNK-autophagy axis may provide a novel strategy for the prevention and treatment of HIRI.展开更多
The micro RNA(mi RNA) let-7 was one of the first mi RNAs to be discovered, and is highly conserved and widely expressed among species. let-7 expression increases in brain tissue after cerebral ischemia/reperfusion i...The micro RNA(mi RNA) let-7 was one of the first mi RNAs to be discovered, and is highly conserved and widely expressed among species. let-7 expression increases in brain tissue after cerebral ischemia/reperfusion injury; however, no studies have reported let-7 effects on nerve injury after cerebral ischemia/reperfusion injury. To investigate the effects of let-7 gene knockdown on cerebral ischemia/reperfusion injury, we established a rat model of cerebral ischemia/reperfusion injury. Quantitative reverse transcription-polymerase chain reaction demonstrated that 12 hours after cerebral ischemia/reperfusion injury, let-7 expression was up-regulated, peaked at 24 hours, and was still higher than that in control rats after 72 hours. Let-7 gene knockdown in rats suppressed microglial activation and inflammatory factor release, reduced neuronal apoptosis and infarct volume in brain tissue after cerebral ischemia/reperfusion injury. Western blot assays and luciferase assays revealed that mitogen-activated protein kinase phosphatase-1(MKP1) is a direct target of let-7. Let-7 enhanced phosphorylated p38 mitogen-activated protein kinase(MAPK) and c-Jun N-terminal kinase(JNK) expression by down-regulating MKP1. These findings suggest that knockdown of let-7 inhibited the activation of p38 MAPK and JNK signaling pathways by up-regulating MKP1 expression, reduced apoptosis and the inflammatory reaction, and exerted a neuroprotective effect following cerebral ischemia/reperfusion injury.展开更多
AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resis...AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resistance in hepatocellular carcinoma(HCC)and to study the efficacy of agonistic TRAIL antibodies,as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis. METHODS:Surface expression of TRAIL receptors (TRAIL-R1-4)and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL were analyzed by flow cytometry and Western blotting,respectively. Knock-down of MCL-1 and BCL-xL was performed by transfecting specific small interfering RNAs.HCC cellswere treated with kinase inhibitors and chemotherapeutic drugs.Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS:TRAIL-R1 and-R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However,treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates.Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002[inhibition of phosphoinositol- 3-kinase(PI3K)],AG1478(epidermal growth factor receptor kinase),PD98059(MEK1),rapamycin(mam- malian target of rapamycin)and the multi-kinase inhibitor Sorafenib.Furthermore,the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL play a major role in TRAIL resistance:knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells.Additionally, knock-down of MCL-1 and BCL-xL led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.CONCLUSION:Our data identify the blockage of survival kinases,combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.展开更多
Our previous research showed that octacosanol exerted its protective effects in 6-hydroxydopamine-induced Parkinsonian rats. The goal of this study was to investigate whether octacosanol would attenuate neurotoxicity ...Our previous research showed that octacosanol exerted its protective effects in 6-hydroxydopamine-induced Parkinsonian rats. The goal of this study was to investigate whether octacosanol would attenuate neurotoxicity in 1-methyl-4-phenyl-l,2,3,6 tetrahydropyridine (MPTP)-treated C57BL/6N mice and its potential mechanism. Behavioral tests, tyrosine hydroxylase immunohistochemistry and western blot were used to investigate the effects of octacosanol in a mouse model of Parkinson's disease. Oral administration of octacosanol (100 mg/kg) significantly improved behavioral impairments Jn mice treated by MPTP and markedly ameliorated morphological appearances of tyrosine hydroxylase-positive neuronal cells in the substantia nigra. Furthermore, octacosanol blocked MPTP-induced phosphorylation of p38MAPK and JNK, but not ERK1/2. These findings implicated that the protective effects afforded by octacosanol might be mediated by blocking the phosphorylation of p38MAPK and JNK on the signa transduction in vivo. Considering its excellent tolerability, octacosanol might be considered as a candidate agent for clinical application in treating Parkinson's disease.展开更多
Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeox...Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in- creased, which was associated with retinal ganglion cell death in diabetic retinas. The C/ERB ho- mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in- dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu- ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.展开更多
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (M...The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-INL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.展开更多
CSN1 is a component of the COP9 signalosome(CSN),a conserved protein complex with pleiotropic functions in many organs and cell types.CSN regulates ubiquitinproteasome dependent protein degradation via the deneddylati...CSN1 is a component of the COP9 signalosome(CSN),a conserved protein complex with pleiotropic functions in many organs and cell types.CSN regulates ubiquitinproteasome dependent protein degradation via the deneddylation and the associated deubiquitination activities.In addition,CSN associates with protein kinases and modulates cell signaling,particularly the activator protein 1(AP-1)pathway.We have shown previously that CSN1 suppresses AP-1 transcription activity and inhibits ultraviolet(UV)and serum activation of c-fos expression.Here we show that CSN1 can inhibit phosphorylation of proto-oncogene c-Jun product and repress c-Jun dependent transcription.Further,CSN1 dramatically downregulates ectopic expression of c-Jun N-terminal kinase 1(JNK1)in cultured cells.The decline in JNK1 is not caused by excessive proteolysis or by 3′UTR-dependent mRNA instability,but by CSN1-dependent repression of one or multiple steps in transcriptional and posttranscriptional mechanisms.Thus,in contrast to CSN5/Jab1,which promotes AP-1 activity,CSN1 displays a negative effect on the AP-1 pathway.Finally,we discuss about the dynamic equilibrium of the CSN complexes in regulation of the AP-1 pathway.展开更多
基金Supported by A grant from the National Eleventh Five-Year Technology Support Project of China,No. 2008 BAI68B01
文摘AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)] and flow cytometry(Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC790l cells in G0/G1 phase,but a reduced population in S phase following thermotherapy for 1 or 2 h,compared to untreated cells(P < 0.05).The increased number of SGC-790l cells in G0/G1 phase was consistent with induced apoptosis(flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group(46.5% ± 0.23%,39.9% ± 0.53%,56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay(48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment(P < 0.01),and peaked at 2 h.A similar pattern was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased.Furthermore,the JNK specific inhibitor,SP600125,suppressed p-JNK,Bax and caspase-3 at the protein level in SGC790l cells following thermotherapy,compared to mock-inhibitor treatment,which was in line with the decreased rate of apoptosis.The expression of Bcl-2 was consistent with thermotherapy alone.CONCLUSION:Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels,and up-regulated the expression of Bax and caspase-3 proteins.Bcl-2 may play a protective role during thermotherapy.Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.
基金supported by the National Natural Science Foundation of China, No.30872705/HD426 and No.81070538/HD429
文摘Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway.
文摘The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.
基金supported by the National Natural Science Foundation of ChinaNo.81271387+3 种基金the Research Special Fund of Public Welfare and Health Department of ChinaNo.201402009the National Key Technology R&D Program in ChinaNo.Z141107002514031
文摘The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.
基金supported by grants from the National Natural Science Foundation of China (No.30871200)the Practice and Innovation Training Program for Students in Colleges and Universities of Jiangsu Province (NO.20090370)
文摘Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine the activity of extracellular- signal regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) using antibodies against ERK, JNK and diphosphorylated ERK and JNK. Results: At lh reperfusion post-ischemia, JNK reached its peak activity while ERK was undergoing a sharp inactivation (P 〈 0.05). The level of diphosphorylated JNK was significantly reduced but the sharp inactivation of ERK was visibly reversed (P 〈 0.05) by the sphingomyelinase inhibitor. Conclusion: The ceramide signaling pathway is up-regulated through sphingomyelin hydrolysis in brain ischemia, promoting JNK activation and suppressing ERK activation, culminating in the ischemic lesion.
基金German Research Foundation(DFG),No.TR1663/1-1 and No.KN356/9-1and Else Kröner-Fresenius-Stiftung,No.2017_A142.
文摘Pancreatic cancer is a dismal disease with high incidence and poor survival rates.With the aim to improve overall survival of pancreatic cancer patients,new therapeutic approaches are urgently needed.Protein kinases are key regulatory players in basically all stages of development,maintaining physiologic functions but also being involved in pathogenic processes.c-Jun N-terminal kinases(JNK)and p38 kinases,representatives of the mitogen-activated protein kinases,as well as the casein kinase 1(CK1)family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors,DNA damage,and others.In their physiologic roles,they are responsible for the regulation of cell cycle progression,cell proliferation and differentiation,and apoptosis.Dysregulation of the underlying pathways consequently has been identified in various cancer types,including pancreatic cancer.Pharmacological targeting of those pathways has been the field of interest for several years.While success in earlier studies was limited due to lacking specificity and off-target effects,more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results.Consequently,targeting of JNK,p38,and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases.However,further studies are warranted,especially involving in vivo investigation and clinical trials,in order to advance inhibition of stress-activated kinases to the field of translational medicine.
文摘Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.
基金Supported by SNUH Research Fund,Grant NO 04-2016-0220the Education and Research Encouragement Fund of Seoul National University Hospital(2015)
文摘AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcriptionpolymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.
基金the Clinical Research Support Fund of Chinese PLA General Hospital(2018FC-WJFWZX-1-03)Youth Talents Promotion Project of China(17-JCJQ-QT-036)Natural Science Foundation of Beijing(7214254).
文摘Background:In sepsis,vitamin D binding protein(VDBP)has been shown to be low-expressed.The current study examined the relationship between serum VDBP level and liver injury in sepsis patients,as well as in a mouse model for sepsis and in cultured liver epithelial cell line exposed to lipopolysaccharide(LPS).Methods:The human study included 78 sepsis patients and 50 healthy volunteers.Sepsis patients were categorized into sepsis survivor group(n=43)and sepsis non-survivor group(n=35)based on 28-day mortality for data analysis.Adult male C57BL/6 mice were subjected to cecal ligation and puncture(CLP).Serum samples were collected on day 1,3,5 and 7 to determine the levels of VDBP,25-hydroxyvitamin D[25(OH)D_(3)],1,25-dihydroxyvitamin D[1,25(OH)_(2)D_(3)],interleukin-6(IL-6)and tumor necrosis factor alpha(TNF-α).Potential protective effects of VDBP overexpression against LPS-induced liver damage were examined in cultured THLE2 cells.Results:Serum levels of VDBP,25(OH)D_(3),and 1,25(OH)_(2)D_(3)were significantly lower in sepsis patients vs.the healthy control(P<0.001),as well as in the sepsis non-survivor group vs.the sepsis survivor group(P<0.001,P=0.0338,or P=0.0013,respectively).Lower serum VDBP level was associated with higher Acute Physiology and Chronic Health Evaluation(APACHE)II score(r=−0.2565,P=0.0234)and Sequential Organ Failure Assessment score(r=−0.3522,P=0.0016),but lower serum albumin(ALB,r=0.4628,P<0.001)and total protein(TP,r=0.263,P=0.02).In CLP mice,there was a 5-day period of serum VDBP reduction,followed by return towards the baseline on day 7.VDBP was also decreased in LPS-treated THLE2 cells(P<0.001).VDBP overexpression reduced LPS-induced THLE2 damage.Reduced damage was associated with decreased oxidative stress and inactivation of the c-Jun N-terminal kinase signaling pathway.Conclusion:VDBP may be protective against sepsis-induced liver injury.
基金supported by the National Basic Research Program of China,Nos.31700883(to YPH)and 91649118(to BZ)China Postdoctoral Science Foundation,No.2015M581072(to YPH)the Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB38000000(to JRW).
文摘Extracellular aggregation of amyloid-beta(Aβ)and intracellular tau tangles are two major pathogenic hallmarks and critical factors of Alzheimer’s disease.A linear interaction between Aβand tau protein has been characterized in several models.Aβinduces tau hyperphosphorylation through a complex mechanism;however,the master regulators involved in this linear process are still unclear.In our study with Drosophila melanogaster,we found that Aβregulated tau hyperphosphorylation and toxicity by activating c-Jun N-terminal kinase.Importantly,Aβtoxicity was dependent on tau hyperphosphorylation,and flies with hypophosphorylated tau were insulated against Aβ-induced toxicity.Strikingly,tau accumulation reciprocally interfered with Aβdegradation and correlated with the reduction in mRNA expression of genes encoding Aβ-degrading enzymes,including dNep1,dNep3,dMmp2,dNep4,and dIDE.Our results indicate that Aβand tau protein work synergistically to further accelerate Alzheimer’s disease progression and may be considered as a combined target for future development of Alzheimer’s disease therapeutics.
基金Supported by: the National Natural Science Foundation of China, No. 30571790
文摘BACKGROUND: Recent studies have shown that the selective inhibitor of c-Jun N-terminal kinases (JNKs) signaling pathway, SP600125, exhibits neuronal protective effects in a rat model of brain ischemia/reperfusion. OBJECTIVE: To determine the mechanisms of neuroprotective effects of SP600125 in a rat model of brain ischemia/reperfusion, and determine the role of the JNK signaling pathway in SP600125-induced effects. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Animal Experiment Center, Medical School of Xi'an Jiaotong University from June 2007 to September 2008. MATERIALS: SP600125 was provided by Biosource, USA; rabbit anti-phospho-JNK (Thr183/Tyr185) polyclonal antibody from Cell Signaling Technology, USA; rabbit anti-X-ray repair cross-complementing protein 1 (XRCC1) and anti-Ku70 polyclonal antibodies from Santa Cruz Biotechnology, USA; and TUNEL kit from Beijing Huamei Biology, China. METHODS: A total of 108 male, 4-month-old, Sprague Dawley rats were randomly assigned to three groups, with 36 rats per group. The sham operation group and ischemia/reperfusion group (I/R group) were intracerebroventricularly injected with 10 μL 1% DMSO. The SP600125-treated group (pre-SP group) was given 10 μL SP600125 (3 μg/μL). Thirty minutes later, brain ischemia was induced in the I/R and pre-SP groups using the four-vessel occlusion method. Specifically, whole brain ischemia was induced for 6 minutes, and the clips were released to restore carotid artery blood flow. Rats from each group were observed at 2, 6, 12, 24, 48, and 72 hours, with 6 rats for each time point. The sham operation group was treated with the same surgical exposure procedures, with exception of occlusion of the carotid artery. MAIN OUTCOME MEASURES: Hematoxylin-eosin staining was used to observe neuronal survival in the hippocampal CA1 region, TUNEL was used to detect apoptosis in the hippocampal CA1 region, and immunohistochemistry was used to detect expression of phospho-JNK, XRCC1, and Ku70. RESULTS: Following brain ischemia/reperfusion, neuronal survival significantly decreased, and the number of apoptotic cells significantly increased (P 〈 0.01). Compared with the I/R group, neuronal survival significantly increased in the pre-SP group, and the number of apoptotic cells significantly decreased (P 〈 0.01). Expression of phospho-JNK increased, and XRCC1 and Ku70 significantly decreased (P 〈 0.05) following ischemia/reperfusion. Compared with the I/R group, expression of phospho-JNK decreased, and XRCC1 and Ku70 significantly increased in the pre-SP group (P 〈 0.05). Correlation analysis revealed an inverse correlation between phospho-JNK gray value and XRCC1 and Ku70 gray values in the hippocampal CA1 region (r = -0.983, -0.953, P 〈 0.01). CONCLUSION: SP600125 treatment decreased apoptosis induced by global brain ischemia/reperfusion in the rat hippocampal CA1 region. Results suggested that the neuroprotective effects were due to inhibited phosphorylation of JNK and reduced down-regulation of XRCC1 and Ku70.
基金supported by National Natural Science Foundation of China(81660689 and 81700523)
文摘OBJECTIVE To investigate the hepato-protective mechanism of thymoquinone(TQ) on the development of acetaminophen(APAP)-induced liver injury.METHODS In vivo,male kunming mice were injected with a single dose of 300 mg·kg^(-1) APAP.Some mice were pretreated with TQ(5 or 20 mg·kg^(-1))and N-acetylcysteine(NAC,300 mg·kg^(-1))2 h before APAP injection.Mice were euthanized at 2 h,6 h,12 h after APAP treatment.In vitro,human Chang liver cells were incubated with 3.125,6.25 or 12.5μmol·L^(-1) TQ,10μmol·L^(-1) SP600125 and 500μmol·L^(-1) AICAR in the presence of APAP for 24 h.Cell viability were analyzed by MTT assay,protein expressions were assessed by Western blot.RESULTS TQ pretreatment significantly reduced serum aminotransferase and increased hepatic glutathione(GSH)and glutathione peroxidase(GSH-PX)activities,while significantly inhibited interleukin-1β(IL^(-1)β)levels.TQ significantly inhibited c-Jun N-terminal kinase(JNK),extracellular signal regulated kinase(ERK)and P38 phosphorylation induced by APAP.Moreover,TQ inhibited phosphatidylinositol 3-kinase(PI3K)/mammalian target of rapamycin(m TOR)signaling activation and activated AMPK phosphorylation induced by APAP.In addition,TQ inhibited signal transducer and activator of transcription 3(STAT3)phosphorylation on APAP-induced liver injury.In vitro,APAP enhanced JNK phosphorylation and attenuated AMPK phosphorylation in Chang liver cel s,and these effects were blocked by pretreatment with TQ,SP600125(JNK inhibitor)and AICAR(AMPK activator).CONCLUSION Our findings suggest that TQ may actively prevent APAP-induced liver injury,and this effect may be mediated by JNK and AMPK signaling pathways.
基金supported by grants from the National Natural Science Foundation of China(Nos.82100691,82070673,and 81870447)the Guangdong Natural Science Foundation(No.2021A1515010726)+1 种基金the China Postdoctoral Science Foundation(No.2021M693631)the Medical Scientific Research Foundation of Guangdong Province of China(No.A2021160).
文摘Background:Hepatic ischemia-reperfusion injury(HIRI)remains a common complication during liver transplantation(LT)in patients.As a key downstream effector of the Hippo pathway,Yes-associated protein(YAP)has been reported to be involved in various physiological and pathological processes.However,it remains elusive whether and how YAP may control autophagy activation during ischemia-reperfusion.Methods:Human liver tissues from patients who had undergone LT were obtained to evaluate the correlation between YAP and autophagy activation.Both an in vitro hepatocyte cell line and in vivo liver-specific YAP knockdown mice were used to establish the hepatic ischemia-reperfusion models to determine the role of YAP in the activation of autophagy and the mechanism of regulation.Results:Autophagy was activated in the post-perfusion liver grafts during LT in patients,and the expression of YAP positively correlated with the autophagic level of hepatocytes.Liver-specific knockdown of YAP inhibited hepatocytes autophagy upon hypoxia-reoxygenation and HIRI(P<0.05).YAP deficiency aggravated HIRI by promoting the apoptosis of hepatocytes both in the in vitro and in vivo models(P<0.05).Attenuated HIRI by overexpression of YAP was diminished after the inhibition of autophagy with 3-methyladenine.In addition,inhibiting autophagy activation by YAP knockdown exacerbated mitochondrial damage through increasing reactive oxygen species(P<0.05).Moreover,the regulation of autophagy by YAP during HIRI was mediated by AP1(c-Jun)N-terminal kinase(JNK)signaling through binding to the transcriptional enhanced associate domain(TEAD).Conclusions:YAP protects against HIRI by inducing autophagy via JNK signaling that suppresses the apoptosis of hepatocytes.Targeting Hippo(YAP)-JNK-autophagy axis may provide a novel strategy for the prevention and treatment of HIRI.
基金supported by the National Natural Science Foundation of China,No.81460193
文摘The micro RNA(mi RNA) let-7 was one of the first mi RNAs to be discovered, and is highly conserved and widely expressed among species. let-7 expression increases in brain tissue after cerebral ischemia/reperfusion injury; however, no studies have reported let-7 effects on nerve injury after cerebral ischemia/reperfusion injury. To investigate the effects of let-7 gene knockdown on cerebral ischemia/reperfusion injury, we established a rat model of cerebral ischemia/reperfusion injury. Quantitative reverse transcription-polymerase chain reaction demonstrated that 12 hours after cerebral ischemia/reperfusion injury, let-7 expression was up-regulated, peaked at 24 hours, and was still higher than that in control rats after 72 hours. Let-7 gene knockdown in rats suppressed microglial activation and inflammatory factor release, reduced neuronal apoptosis and infarct volume in brain tissue after cerebral ischemia/reperfusion injury. Western blot assays and luciferase assays revealed that mitogen-activated protein kinase phosphatase-1(MKP1) is a direct target of let-7. Let-7 enhanced phosphorylated p38 mitogen-activated protein kinase(MAPK) and c-Jun N-terminal kinase(JNK) expression by down-regulating MKP1. These findings suggest that knockdown of let-7 inhibited the activation of p38 MAPK and JNK signaling pathways by up-regulating MKP1 expression, reduced apoptosis and the inflammatory reaction, and exerted a neuroprotective effect following cerebral ischemia/reperfusion injury.
基金Supported by Research grants from Merck KGaA,Darmstadt,Germany,to Schulze-Bergkamen H
文摘AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resistance in hepatocellular carcinoma(HCC)and to study the efficacy of agonistic TRAIL antibodies,as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis. METHODS:Surface expression of TRAIL receptors (TRAIL-R1-4)and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL were analyzed by flow cytometry and Western blotting,respectively. Knock-down of MCL-1 and BCL-xL was performed by transfecting specific small interfering RNAs.HCC cellswere treated with kinase inhibitors and chemotherapeutic drugs.Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS:TRAIL-R1 and-R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However,treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates.Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002[inhibition of phosphoinositol- 3-kinase(PI3K)],AG1478(epidermal growth factor receptor kinase),PD98059(MEK1),rapamycin(mam- malian target of rapamycin)and the multi-kinase inhibitor Sorafenib.Furthermore,the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL play a major role in TRAIL resistance:knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells.Additionally, knock-down of MCL-1 and BCL-xL led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.CONCLUSION:Our data identify the blockage of survival kinases,combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.
基金supported by the grants from National Basic Research Program of China (973 Program), No.2007B507400, 2010CB934002, 2011CB504101, 2011CBA00408the National Natural Science Foundation of China, No. 81050025the grant from the Ministry of Science and Technology of China Eleventh 5-year Plan-Technical Platform for Drug Development, No. 2009ZX09303-8
文摘Our previous research showed that octacosanol exerted its protective effects in 6-hydroxydopamine-induced Parkinsonian rats. The goal of this study was to investigate whether octacosanol would attenuate neurotoxicity in 1-methyl-4-phenyl-l,2,3,6 tetrahydropyridine (MPTP)-treated C57BL/6N mice and its potential mechanism. Behavioral tests, tyrosine hydroxylase immunohistochemistry and western blot were used to investigate the effects of octacosanol in a mouse model of Parkinson's disease. Oral administration of octacosanol (100 mg/kg) significantly improved behavioral impairments Jn mice treated by MPTP and markedly ameliorated morphological appearances of tyrosine hydroxylase-positive neuronal cells in the substantia nigra. Furthermore, octacosanol blocked MPTP-induced phosphorylation of p38MAPK and JNK, but not ERK1/2. These findings implicated that the protective effects afforded by octacosanol might be mediated by blocking the phosphorylation of p38MAPK and JNK on the signa transduction in vivo. Considering its excellent tolerability, octacosanol might be considered as a candidate agent for clinical application in treating Parkinson's disease.
基金supported by the National Natural Science Foundation of China,No.81170877the National Basic Research Program of China,No.2007CB512203
文摘Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in- creased, which was associated with retinal ganglion cell death in diabetic retinas. The C/ERB ho- mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in- dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu- ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period of China (2008ZX10001-002)Major Science and Technology Innovation Cross Project of the Chinese Academy of Sciences (KSCX1-YW-10)
文摘The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-INL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.
基金supported by research grants from the National Institutes of Health(GM61812)to NWthe Human Frontier Long Term Fellowship(LT0084/1998-M)to TTa collaborative grant from The Kyoto University Foundation(2007-2008)to NW,SM,and TT.
文摘CSN1 is a component of the COP9 signalosome(CSN),a conserved protein complex with pleiotropic functions in many organs and cell types.CSN regulates ubiquitinproteasome dependent protein degradation via the deneddylation and the associated deubiquitination activities.In addition,CSN associates with protein kinases and modulates cell signaling,particularly the activator protein 1(AP-1)pathway.We have shown previously that CSN1 suppresses AP-1 transcription activity and inhibits ultraviolet(UV)and serum activation of c-fos expression.Here we show that CSN1 can inhibit phosphorylation of proto-oncogene c-Jun product and repress c-Jun dependent transcription.Further,CSN1 dramatically downregulates ectopic expression of c-Jun N-terminal kinase 1(JNK1)in cultured cells.The decline in JNK1 is not caused by excessive proteolysis or by 3′UTR-dependent mRNA instability,but by CSN1-dependent repression of one or multiple steps in transcriptional and posttranscriptional mechanisms.Thus,in contrast to CSN5/Jab1,which promotes AP-1 activity,CSN1 displays a negative effect on the AP-1 pathway.Finally,we discuss about the dynamic equilibrium of the CSN complexes in regulation of the AP-1 pathway.