Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch...Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.展开更多
In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the conv...In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.展开更多
For a stochastic differential equation with non-Lipschitz coefficients, we construct, by Euler scheme, a measurable flow of the solution, and we prove the solution is a Markov process.
In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmo...In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmooth boundary layer function with respect to small parameter e is given, and error estimate and numerical result are also given.展开更多
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi...In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.展开更多
This paper is devoted to introducing an optimization algorithm which is devised on a basis of ordinary differential equation model describing the process of animal swarming. By several numerical simulations, the natur...This paper is devoted to introducing an optimization algorithm which is devised on a basis of ordinary differential equation model describing the process of animal swarming. By several numerical simulations, the nature of the optimization algorithm is clarified. Especially, if parameters included in the algorithm are suitably set, our scheme can show very good performance even in higher dimensional problems.展开更多
In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the rece...In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.展开更多
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform...In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.展开更多
In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the t...In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. T...The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.展开更多
Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is t...Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators.Firstly,the strength number of the deterministic case is carried out.Then,for the stochastic model,we show that there is a critical number RS0 that can predict virus persistence and infection eradication.Because of the peculiarity of this notion,an interesting way to ensure the existence and uniqueness of the global positive solution characterized by the stochastic COVID-19 model is established by creating a sequence of appropriate Lyapunov candidates.Adetailed ergodic stationary distribution for the stochastic COVID-19 model is provided.Our findings demonstrate a piecewise numerical technique to generate simulation studies for these frameworks.The collected outcomes leave no doubt that this conception is a revolutionary doorway that will assist mankind in good perspective nature.展开更多
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order converge...In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided.展开更多
We emphasized explicitly on the derivation and implementation of a new numerical algorithm scheme which gave stable results that show the applicability of the method. In this paper, we aimed to solve some second order...We emphasized explicitly on the derivation and implementation of a new numerical algorithm scheme which gave stable results that show the applicability of the method. In this paper, we aimed to solve some second order initial value problems of ordinary differential equations and compare the results with the theoretical solution. Using this method to solve some initial value problems of second order ordinary differential equations, we discovered that the results compared favorably with the theoretical solution which led to the conclusion that the new numerical algorithm scheme derived in the research is approximately correct and can be prescribed for any related ordinary differential equations.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using par...In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using parallel symbolic calculations to obtain solutions in analytical form. We showed the convergence of the scheme of successive approximations on the period, and also considered an example of a second order system where the described scheme of calculations can be applied.展开更多
The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann cond...The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.展开更多
In this paper, we presented an asymptotic fitted approach to solve singularly perturbed delay differential equations of second order with left and right boundary. In this approach, the singularly perturbed delay diffe...In this paper, we presented an asymptotic fitted approach to solve singularly perturbed delay differential equations of second order with left and right boundary. In this approach, the singularly perturbed delay differential equations is modified by approximating the term containing negative shift using Taylor series expansion. After approximating the coefficient of the second derivative of the new equation, we introduced a fitting parameter and determined its value using the theory of singular Perturbation;O’Malley [1]. The three term recurrence relation obtained is solved using Thomas algorithm. The applicability of the method is tested by considering five linear problems (two problems on left layer and one problem on right layer) and two nonlinear problems.展开更多
基金supported by the Department of Science & Technology, Government of India under research grant SR/S4/MS:318/06.
文摘Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.
文摘In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.
文摘For a stochastic differential equation with non-Lipschitz coefficients, we construct, by Euler scheme, a measurable flow of the solution, and we prove the solution is a Markov process.
文摘In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmooth boundary layer function with respect to small parameter e is given, and error estimate and numerical result are also given.
文摘In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.
文摘This paper is devoted to introducing an optimization algorithm which is devised on a basis of ordinary differential equation model describing the process of animal swarming. By several numerical simulations, the nature of the optimization algorithm is clarified. Especially, if parameters included in the algorithm are suitably set, our scheme can show very good performance even in higher dimensional problems.
基金supported by National Natural Science Foundation of China(No.61801106).
文摘In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.
文摘In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.
文摘In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
文摘The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.
文摘Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators.Firstly,the strength number of the deterministic case is carried out.Then,for the stochastic model,we show that there is a critical number RS0 that can predict virus persistence and infection eradication.Because of the peculiarity of this notion,an interesting way to ensure the existence and uniqueness of the global positive solution characterized by the stochastic COVID-19 model is established by creating a sequence of appropriate Lyapunov candidates.Adetailed ergodic stationary distribution for the stochastic COVID-19 model is provided.Our findings demonstrate a piecewise numerical technique to generate simulation studies for these frameworks.The collected outcomes leave no doubt that this conception is a revolutionary doorway that will assist mankind in good perspective nature.
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).
文摘In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided.
文摘We emphasized explicitly on the derivation and implementation of a new numerical algorithm scheme which gave stable results that show the applicability of the method. In this paper, we aimed to solve some second order initial value problems of ordinary differential equations and compare the results with the theoretical solution. Using this method to solve some initial value problems of second order ordinary differential equations, we discovered that the results compared favorably with the theoretical solution which led to the conclusion that the new numerical algorithm scheme derived in the research is approximately correct and can be prescribed for any related ordinary differential equations.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using parallel symbolic calculations to obtain solutions in analytical form. We showed the convergence of the scheme of successive approximations on the period, and also considered an example of a second order system where the described scheme of calculations can be applied.
文摘The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.
文摘In this paper, we presented an asymptotic fitted approach to solve singularly perturbed delay differential equations of second order with left and right boundary. In this approach, the singularly perturbed delay differential equations is modified by approximating the term containing negative shift using Taylor series expansion. After approximating the coefficient of the second derivative of the new equation, we introduced a fitting parameter and determined its value using the theory of singular Perturbation;O’Malley [1]. The three term recurrence relation obtained is solved using Thomas algorithm. The applicability of the method is tested by considering five linear problems (two problems on left layer and one problem on right layer) and two nonlinear problems.