期刊文献+
共找到400篇文章
< 1 2 20 >
每页显示 20 50 100
Uniform Convergence Analysis of Finite Difference Scheme for Singularly Perturbed Delay Differential Equation on an Adaptively Generated Grid 被引量:2
1
作者 Jugal Mohapatra Srinivasan Natesan 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期1-22,共22页
Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch... Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically. 展开更多
关键词 Singular perturbation problems delay differential equations boundary layer upwind scheme adaptive mesh uniform convergence.
下载PDF
A New Second Order Numerical Scheme for Solving Forward Backward Stochastic Differential Equations with Jumps 被引量:1
2
作者 Hongqiang Zhou Yang Li Zhe Wang 《Applied Mathematics》 2016年第12期1408-1414,共8页
In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator  linearly depending on . And we theoretically prove that the conv... In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator  linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving  and of first order for solving  and  in  norm. 展开更多
关键词 Numerical scheme Error Estimates Backward Stochastic differential Equations
下载PDF
EULER SCHEME AND MEASURABLE FLOWS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS
3
作者 王志明 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期157-168,共12页
For a stochastic differential equation with non-Lipschitz coefficients, we construct, by Euler scheme, a measurable flow of the solution, and we prove the solution is a Markov process.
关键词 stochastic differential equation Euler scheme measurable flow Markov property NON-LIPSCHITZ
下载PDF
DIFFERENCE SCHEME FOR AN INITIAL-BOUNDARY VALUE PROBLEM FOR LINEAR COEFFICIENT-VARIED PARABOLIC DIFFERENTIAL EQUATION WITH A NONSMOOTH BOUNDARY LAYER FUNCTION
4
作者 苏煜城 张由余 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第4期297-304,共8页
In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmo... In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmooth boundary layer function with respect to small parameter e is given, and error estimate and numerical result are also given. 展开更多
关键词 nonsmooth boundary layer characteristic boundary nonuniform mesh exponentially fitted uniformly convergent difference scheme parabolic differential equation
下载PDF
A UNIFORMLY DIFFERENCE SCHEME OF SINGULAR PERTURBATION PROBLEM FOR A SEMILINEAR ORDINARY DIFFERENTIAL EQUATION WITH MIXED BOUNDARY VALUE CONDITION
5
作者 白清源 林鹏程 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第2期187-195,共9页
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi... In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis. 展开更多
关键词 singular perturbation problem difference scheme uniform convergence mixed boundary value condition semilinear ordinary differential equation
下载PDF
Optimization Scheme Based on Differential Equation Model for Animal Swarming
6
作者 Takeshi Uchitane Atsushi Yagi 《Open Journal of Optimization》 2013年第2期45-51,共7页
This paper is devoted to introducing an optimization algorithm which is devised on a basis of ordinary differential equation model describing the process of animal swarming. By several numerical simulations, the natur... This paper is devoted to introducing an optimization algorithm which is devised on a basis of ordinary differential equation model describing the process of animal swarming. By several numerical simulations, the nature of the optimization algorithm is clarified. Especially, if parameters included in the algorithm are suitably set, our scheme can show very good performance even in higher dimensional problems. 展开更多
关键词 OPTIMIZATION scheme differential EQUATION Model ANIMAL SWARMING
下载PDF
Differential Scheme for Reconfigurable Intelligent Surface-Based Spatial Modulation System
7
作者 Han Hai Si Wei +2 位作者 Xueqin Jiang Yuyang Peng Mohsen Guizani 《China Communications》 SCIE CSCD 2023年第10期100-108,共9页
In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the rece... In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments. 展开更多
关键词 reconfigurable intelligent surface(RIS) differential scheme spatial modulation(SM) detection complexity
下载PDF
A UNIFORMLY CONVERGENT SECOND ORDER DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED SELF-ADJOINT ORDINARY DIFFERENTIAL EQUATION IN CONSERVATION FORM
8
作者 郭雯 林鹏程 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第3期231-241,共11页
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform... In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme. 展开更多
关键词 exp A UNIFORMLY CONVERGENT SECOND ORDER DIFFERENCE scheme FOR A SINGULARLY PERTURBED SELF-ADJOINT ORDINARY differential EQUATION IN CONSERVATION FORM
下载PDF
THE UNIFORMLY CONVERGENT DIFFERENCE SCHEMES FOR A SINGULAR PERTURBATION PROBLEM OF A SELFADJOINT ORDINARY DIFFERENTIAL EQUATION
9
作者 林鹏程 郭雯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第1期35-44,共10页
In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the t... In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results. 展开更多
关键词 THE UNIFORMLY CONVERGENT DIFFERENCE schemeS FOR A SINGULAR PERTURBATION PROBLEM OF A SELFADJOINT ORDINARY differential EQUATION
下载PDF
A HIGH ACCURACY DIFFERENCE SCHEME FOR THE SINGULAR PERTURBATION PROBLEM OF THE SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATION IN CONSERVATION FORM
10
作者 王国英 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第5期465-470,共6页
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi... In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3. 展开更多
关键词 A HIGH ACCURACY DIFFERENCE scheme FOR THE SINGULAR PERTURBATION PROBLEM OF THE SECOND-ORDER LINEAR ORDINARY differential EQUATION IN CONSERVATION FORM
下载PDF
Application of Mixed Differential Quadrature Method for Solving the Coupled Two-Dimensional Incompressible Navier-Stokes Equation and Heat Equation 被引量:2
11
作者 A.S.J.AL-SAIF 朱正佑 《Journal of Shanghai University(English Edition)》 CAS 2003年第4期343-351,共9页
The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. T... The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution. 展开更多
关键词 coupled N-S equation and heat equation differential quadrature method upwind difference scheme
下载PDF
Dynamical Analysis of the Stochastic COVID-19 Model Using Piecewise Differential Equation Technique 被引量:1
12
作者 Yu-Ming Chu Sobia Sultana +1 位作者 Saima Rashid Mohammed Shaaf Alharthi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2427-2464,共38页
Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is t... Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators.Firstly,the strength number of the deterministic case is carried out.Then,for the stochastic model,we show that there is a critical number RS0 that can predict virus persistence and infection eradication.Because of the peculiarity of this notion,an interesting way to ensure the existence and uniqueness of the global positive solution characterized by the stochastic COVID-19 model is established by creating a sequence of appropriate Lyapunov candidates.Adetailed ergodic stationary distribution for the stochastic COVID-19 model is provided.Our findings demonstrate a piecewise numerical technique to generate simulation studies for these frameworks.The collected outcomes leave no doubt that this conception is a revolutionary doorway that will assist mankind in good perspective nature. 展开更多
关键词 COVID-19 epidemic model piecewise fractional differential operators piecewise numerical scheme EXTINCTION ergodicity and stationary distribution
下载PDF
NUMERICAL SOLUTION OF NONLINEAR ORDINARY DIFFERENTIAL EQUATION FOR A TURNING POINT PROBLEM
13
作者 林鹏程 白清源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第11期1055-1065,共11页
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o... By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis. 展开更多
关键词 nonlinear ordinary differential equation turning point singular perturbation problem difference scheme uniform convergence
下载PDF
A SINGULAR PERTURBATION PROBLEM FOR PERIODIC BOUNDARY PARTIAL DIFFERENTIAL EQUATION
14
作者 林鹏程 江本铦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第3期281-290,共10页
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ... In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2). 展开更多
关键词 elliptic-parabolic partial differential equation singular perturbation problem periodic boundary difference scheme uniform convergence
下载PDF
NUMERICAL SOLUTION OF A SINGULARLY PERTURBED ELLIPTIC-HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION ON A NONUNIFORM DISCRETIZATION MESH
15
作者 吴启光 孙晓弟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第12期1081-1088,共8页
In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order converge... In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided. 展开更多
关键词 partial differential equation singular perturbation problem upwind difference scheme nonuniform discretization mesh
下载PDF
Solution of Some Second Order Ordinary Differential Equations Using a Derived Algorithm
16
作者 R. B. Ogunrinde J. O. Olubunmi 《Applied Mathematics》 2019年第5期312-325,共14页
We emphasized explicitly on the derivation and implementation of a new numerical algorithm scheme which gave stable results that show the applicability of the method. In this paper, we aimed to solve some second order... We emphasized explicitly on the derivation and implementation of a new numerical algorithm scheme which gave stable results that show the applicability of the method. In this paper, we aimed to solve some second order initial value problems of ordinary differential equations and compare the results with the theoretical solution. Using this method to solve some initial value problems of second order ordinary differential equations, we discovered that the results compared favorably with the theoretical solution which led to the conclusion that the new numerical algorithm scheme derived in the research is approximately correct and can be prescribed for any related ordinary differential equations. 展开更多
关键词 Numerical scheme Ordinary differential EQUATION scheme Development
下载PDF
AN INTEGRATION METHOD WITH FITTING CUBIC SPLINE FUNCTIONS TO A NUMERICAL MODEL OF 2ND-ORDER SPACE-TIME DIFFERENTIAL REMAINDER——FOR AN IDEAL GLOBAL SIMULATION CASE WITH PRIMITIVE ATMOSPHERIC EQUATIONS
17
作者 辜旭赞 张兵 王明欢 《Journal of Tropical Meteorology》 SCIE 2013年第4期388-396,共9页
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi... In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation. 展开更多
关键词 NUMERICAL forecast and NUMERICAL SIMULATION 2nd-order SPACE-TIME differential REMAINDER NUMERICAL model cubic spline functions Navier-Stokes PRIMITIVE EQUATIONS quasi-Lagrangian time-split integration scheme global SIMULATION case
下载PDF
Construction of Periodic Solutions of One Class Nonautonomous Systems of Differential Equations
18
作者 Alexander N. Pchelintsev 《Journal of Applied Mathematics and Physics》 2013年第3期1-4,共4页
In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using par... In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using parallel symbolic calculations to obtain solutions in analytical form. We showed the convergence of the scheme of successive approximations on the period, and also considered an example of a second order system where the described scheme of calculations can be applied. 展开更多
关键词 Periodic Solution System of Ordinary differential EQUATIONS scheme of Successive APPROXIMATIONS SYMBOLIC CALCULATIONS
下载PDF
Solving Different Types of Differential Equations Using Modified and New Modified Adomian Decomposition Methods
19
作者 Justina Mulenga Patrick Azere Phiri 《Journal of Applied Mathematics and Physics》 2023年第6期1656-1676,共21页
The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann cond... The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme. 展开更多
关键词 Neumann Conditions Modified Adomian Decomposition Method Solution scheme New Modified Adomian Decomposition Method differential Equations
下载PDF
An Asymptotic-Fitted Method for Solving Singularly Perturbed Delay Differential Equations
20
作者 Awoke Andargie Yanala Narsimha Reddy 《Applied Mathematics》 2012年第8期895-902,共8页
In this paper, we presented an asymptotic fitted approach to solve singularly perturbed delay differential equations of second order with left and right boundary. In this approach, the singularly perturbed delay diffe... In this paper, we presented an asymptotic fitted approach to solve singularly perturbed delay differential equations of second order with left and right boundary. In this approach, the singularly perturbed delay differential equations is modified by approximating the term containing negative shift using Taylor series expansion. After approximating the coefficient of the second derivative of the new equation, we introduced a fitting parameter and determined its value using the theory of singular Perturbation;O’Malley [1]. The three term recurrence relation obtained is solved using Thomas algorithm. The applicability of the method is tested by considering five linear problems (two problems on left layer and one problem on right layer) and two nonlinear problems. 展开更多
关键词 Asymptotic-Fitted scheme Delay-differential EQUATIONS SINGULAR PERTURBATION Boundary Layer
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部