In this paper, with the aid of large deviation formulas established in strong topology of functional space generated by HSlder norm, we discuss the functional sample path properties of subsequence's C-R increments fo...In this paper, with the aid of large deviation formulas established in strong topology of functional space generated by HSlder norm, we discuss the functional sample path properties of subsequence's C-R increments for a Wiener process in HSlder norm. The obtained results, generalize the corresponding results of Chen and the classic Strassen's law of iterated logarithm for a Wiener process.展开更多
Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees w...Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management.展开更多
In this paper. based on large deviation formulas established in stronger topology generated by Hlder norm, we obtain the functional limit theorems for C-R increments of k-dimensional Brownian motion in Hlder norm
In this paper, based on accurately large deviation formulae established in strong topology generated by the Holder norm for l^2-valued Wiener processes, we obtain the functional limit theorems for C-R increments of l^...In this paper, based on accurately large deviation formulae established in strong topology generated by the Holder norm for l^2-valued Wiener processes, we obtain the functional limit theorems for C-R increments of l^p-valued Wiener processes in the Holder norm.展开更多
Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identi...Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction.展开更多
To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)pre...To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR.展开更多
Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management...Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests.展开更多
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo...The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of i...In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of increments. Our results imply the theorem that have been given by Csorgo and Revesz (1978), and some of their conditions are removed.展开更多
Mid-subtropical forests are the main vegetation type of global terrestrial biomes, and are critical for maintaining the global carbon balance. However, estimates of forest biomass increment in mid-subtropical forests ...Mid-subtropical forests are the main vegetation type of global terrestrial biomes, and are critical for maintaining the global carbon balance. However, estimates of forest biomass increment in mid-subtropical forests remain highly uncertain. It is critically important to determine the relative importance of different biotic and abiotic factors between plants and soil, particularly with respect to their influence on plant regrowth. Consequently,it is necessary to quantitatively characterize the dynamicspatiotemporal distribution of forest carbon sinks at a regional scale. This study used a large, long-term dataset in a boosted regression tree(BRT) model to determine the major components that quantitatively control forest biomass increments in a mid-subtropical forested region(Wuyishan National Nature Reserve, China). Long-term,stand-level data were used to derive the forest biomass increment, with the BRT model being applied to quantify the relative contributions of various biotic and abiotic variables to forest biomass increment. Our data show that total biomass(t) increased from 4.62 9 106 to 5.30 9 106 t between 1988 and 2010, and that the mean biomass increased from 80.19 ± 0.39 t ha-1(mean ± standard error) to 94.33 ± 0.41 t ha-1in the study region. The major factors that controlled biomass(in decreasing order of importance) were the stand, topography, and soil. Stand density was initially the most important stand factor, while elevation was the most important topographic factor. Soil factors were important for forest biomass increment but have a much weaker influence compared to the other two controlling factors. These results provide baseline information about the practical utility of spatial interpolationmethods for mapping forest biomass increments at regional scales.展开更多
Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha...Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha(T))/log T = r, (0 less than or equal to r less than or equal to infinity). In this paper, we proved that [GRAPHICS] where c(1), c(2) are two positive constants depending only on alpha,beta.展开更多
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a...A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.展开更多
A general form of the increments of two-parameter fractional Wiener process is given. The results of Csoergo-Révész increments are a special case,and it also implies the results of the increments of the two-...A general form of the increments of two-parameter fractional Wiener process is given. The results of Csoergo-Révész increments are a special case,and it also implies the results of the increments of the two-parameter Wiener process.展开更多
Let be a stable subordinator defined on a probability space and let at for t>0?be a non-negative valued function. In this paper, it is shown that under varying conditions on at, there exists a function such that wh...Let be a stable subordinator defined on a probability space and let at for t>0?be a non-negative valued function. In this paper, it is shown that under varying conditions on at, there exists a function such that where , , and .展开更多
Let W be a standard Brownian motion,and define Y(t) =∫t 0 ds W(s) as Cauchy' s principal value related to the local time of W.We study some limitresults on lag increments of Y(t) and obtain various results all...Let W be a standard Brownian motion,and define Y(t) =∫t 0 ds W(s) as Cauchy' s principal value related to the local time of W.We study some limitresults on lag increments of Y(t) and obtain various results all of which are related to earlier work by Hanson and Russo in 1 983展开更多
In this paper,the models of increment distributions of stock price are constructed with two approaches. The first approach is based on limit theorems of random summation. The second approach is based on the statistica...In this paper,the models of increment distributions of stock price are constructed with two approaches. The first approach is based on limit theorems of random summation. The second approach is based on the statistical analysis of the increment distribution of the logarithms of stock prices.展开更多
In this paper,we prove some limsup results for increments and lag increments of G(t),which is a stable processe in random scenery.The proofs rely on the tail probability estimation of G(t).
基金Supported by the Natural Science Foundation of Hubei Province of China(2011CDB229)
文摘In this paper, with the aid of large deviation formulas established in strong topology of functional space generated by HSlder norm, we discuss the functional sample path properties of subsequence's C-R increments for a Wiener process in HSlder norm. The obtained results, generalize the corresponding results of Chen and the classic Strassen's law of iterated logarithm for a Wiener process.
基金financed by the National Science Centre,Poland,under project No.2019/35/B/NZ8/01381 entitled"Impact of invasive tree species on ecosystem services:plant biodiversity,carbon and nitrogen cycling and climate regulation"by the Institute of Dendrology,Polish Academy of Sciences。
文摘Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management.
文摘In this paper. based on large deviation formulas established in stronger topology generated by Hlder norm, we obtain the functional limit theorems for C-R increments of k-dimensional Brownian motion in Hlder norm
文摘In this paper, based on accurately large deviation formulae established in strong topology generated by the Holder norm for l^2-valued Wiener processes, we obtain the functional limit theorems for C-R increments of l^p-valued Wiener processes in the Holder norm.
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
基金the National Natural Science Foun-dation of China(Nos.61471263,61872267 and U21B2024)the Natural Science Foundation of Tianjin,China(No.16JCZDJC31100)Tianjin University Innovation Foundation(No.2021XZC0024).
文摘Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction.
文摘To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR.
基金The National Forestry Commission of Mexico and The Mexican National Council for Science and Technology(CONAFOR-CONACYT-115900)。
文摘Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests.
文摘The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
基金Supported by the National Natural Science Foundation of ChinaZhejiang Province Natural Science Fund
文摘In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of increments. Our results imply the theorem that have been given by Csorgo and Revesz (1978), and some of their conditions are removed.
基金supported by National Forestry Public Welfare Foundation of China(201304205)National Science Foundation of China(31470578 and 31200363)+2 种基金Fujian Provincial Department of S&T Project(2016Y0083,2013YZ0001-1,2014J05044 and 2015Y0083)Xiamen Municipal Department of Science and Technology(3502Z20130037 and 3502Z20142016)Youth Innovation Promotion Association CAS
文摘Mid-subtropical forests are the main vegetation type of global terrestrial biomes, and are critical for maintaining the global carbon balance. However, estimates of forest biomass increment in mid-subtropical forests remain highly uncertain. It is critically important to determine the relative importance of different biotic and abiotic factors between plants and soil, particularly with respect to their influence on plant regrowth. Consequently,it is necessary to quantitatively characterize the dynamicspatiotemporal distribution of forest carbon sinks at a regional scale. This study used a large, long-term dataset in a boosted regression tree(BRT) model to determine the major components that quantitatively control forest biomass increments in a mid-subtropical forested region(Wuyishan National Nature Reserve, China). Long-term,stand-level data were used to derive the forest biomass increment, with the BRT model being applied to quantify the relative contributions of various biotic and abiotic variables to forest biomass increment. Our data show that total biomass(t) increased from 4.62 9 106 to 5.30 9 106 t between 1988 and 2010, and that the mean biomass increased from 80.19 ± 0.39 t ha-1(mean ± standard error) to 94.33 ± 0.41 t ha-1in the study region. The major factors that controlled biomass(in decreasing order of importance) were the stand, topography, and soil. Stand density was initially the most important stand factor, while elevation was the most important topographic factor. Soil factors were important for forest biomass increment but have a much weaker influence compared to the other two controlling factors. These results provide baseline information about the practical utility of spatial interpolationmethods for mapping forest biomass increments at regional scales.
文摘Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha(T))/log T = r, (0 less than or equal to r less than or equal to infinity). In this paper, we proved that [GRAPHICS] where c(1), c(2) are two positive constants depending only on alpha,beta.
文摘A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.
文摘A general form of the increments of two-parameter fractional Wiener process is given. The results of Csoergo-Révész increments are a special case,and it also implies the results of the increments of the two-parameter Wiener process.
文摘Let be a stable subordinator defined on a probability space and let at for t>0?be a non-negative valued function. In this paper, it is shown that under varying conditions on at, there exists a function such that where , , and .
文摘Let W be a standard Brownian motion,and define Y(t) =∫t 0 ds W(s) as Cauchy' s principal value related to the local time of W.We study some limitresults on lag increments of Y(t) and obtain various results all of which are related to earlier work by Hanson and Russo in 1 983
文摘In this paper,the models of increment distributions of stock price are constructed with two approaches. The first approach is based on limit theorems of random summation. The second approach is based on the statistical analysis of the increment distribution of the logarithms of stock prices.
文摘In this paper,we prove some limsup results for increments and lag increments of G(t),which is a stable processe in random scenery.The proofs rely on the tail probability estimation of G(t).