In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is i...In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.展开更多
采用电流密度拉普拉斯变换(Current Density Laplace Transform)方法将无子时间步的蛙跳式交替方向隐式时域有限差分(leapfrog-ADI-FDTD)方法应用于等离子体的电磁计算中,得到了等离子体中的迭代公式。为了验证该方法的有效性,计算了等...采用电流密度拉普拉斯变换(Current Density Laplace Transform)方法将无子时间步的蛙跳式交替方向隐式时域有限差分(leapfrog-ADI-FDTD)方法应用于等离子体的电磁计算中,得到了等离子体中的迭代公式。为了验证该方法的有效性,计算了等离子体平板的反射系数和透射系数,并与几种传统的FDTD方法进行了对比,数值实验表明,提出的算法具有无条件稳定性,精度和效率高于普通的显式FDTD方法。展开更多
This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,...This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,we construct a kind of oneparameter finite difference(OPFD)method.It is shown that,under a suitable condition,the proposed method is convergent with second order accuracy both in time and space.In implementation,the preconditioned conjugate gradient(PCG)method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method.For 2D problems,we develop another kind of OPFD method.For such a method,two classes of accelerated schemes are suggested,one is alternative direction implicit(ADI)scheme and the other is ADI-PCG scheme.In particular,we prove that ADI scheme can arrive at second-order accuracy in time and space.With some numerical experiments,the computational effectiveness and accuracy of the methods are further verified.Moreover,for the suggested methods,a numerical comparison in computational efficiency is presented.展开更多
基于贴体平面二维正交曲线网格,建立了河道二维非恒定流的数学模型,采用交替方向隐格式法(Alternating Direction Implicit Method简称ADI法)对二维浅水方程进行了差分离散求解。在离散过程中,对对流项采用一阶迎风格式,以克服由于对流...基于贴体平面二维正交曲线网格,建立了河道二维非恒定流的数学模型,采用交替方向隐格式法(Alternating Direction Implicit Method简称ADI法)对二维浅水方程进行了差分离散求解。在离散过程中,对对流项采用一阶迎风格式,以克服由于对流项采用中心差分而引起的不稳定。以长江南通河段为例,对模型进行了验证计算。计算结果表明,模型能较好地模拟复杂条件下天然河道的水流基本规律。展开更多
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20010614003)
文摘In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.
文摘采用电流密度拉普拉斯变换(Current Density Laplace Transform)方法将无子时间步的蛙跳式交替方向隐式时域有限差分(leapfrog-ADI-FDTD)方法应用于等离子体的电磁计算中,得到了等离子体中的迭代公式。为了验证该方法的有效性,计算了等离子体平板的反射系数和透射系数,并与几种传统的FDTD方法进行了对比,数值实验表明,提出的算法具有无条件稳定性,精度和效率高于普通的显式FDTD方法。
基金supported by the NSFC(Grant No.11971010)the Science and Technology Development Fund of Macao(Grant No.0122/2020/A3)MYRG2020-00224-FST from University of Macao,China.
文摘This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,we construct a kind of oneparameter finite difference(OPFD)method.It is shown that,under a suitable condition,the proposed method is convergent with second order accuracy both in time and space.In implementation,the preconditioned conjugate gradient(PCG)method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method.For 2D problems,we develop another kind of OPFD method.For such a method,two classes of accelerated schemes are suggested,one is alternative direction implicit(ADI)scheme and the other is ADI-PCG scheme.In particular,we prove that ADI scheme can arrive at second-order accuracy in time and space.With some numerical experiments,the computational effectiveness and accuracy of the methods are further verified.Moreover,for the suggested methods,a numerical comparison in computational efficiency is presented.
文摘基于贴体平面二维正交曲线网格,建立了河道二维非恒定流的数学模型,采用交替方向隐格式法(Alternating Direction Implicit Method简称ADI法)对二维浅水方程进行了差分离散求解。在离散过程中,对对流项采用一阶迎风格式,以克服由于对流项采用中心差分而引起的不稳定。以长江南通河段为例,对模型进行了验证计算。计算结果表明,模型能较好地模拟复杂条件下天然河道的水流基本规律。