Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F a...Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all Sylow subgroups of H is either c-normal or s-quasinormally embedded in G; (2) G ∈F if and only if there is a soluble normal subgroup H such that G/H∈F and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either e-normally or s-quasinormally embedded in G.展开更多
基金the Natural Science Foundation of Chinathe Natural Science Foundation of Guangxi Autonomous Region (No.0249001)
文摘Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all Sylow subgroups of H is either c-normal or s-quasinormally embedded in G; (2) G ∈F if and only if there is a soluble normal subgroup H such that G/H∈F and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either e-normally or s-quasinormally embedded in G.