A systematic study of the synthesis of C.I.Acid Blue 9 leuco compound in water is reported.The kinetic analysis of experimental data for the condensation reaction between 2-formylbenzenesulfonic acid sodium and N-ethy...A systematic study of the synthesis of C.I.Acid Blue 9 leuco compound in water is reported.The kinetic analysis of experimental data for the condensation reaction between 2-formylbenzenesulfonic acid sodium and N-ethyl-N-(3'-sulfonic acid benzyl) aniline obtained at four different temperatures ranging between 85 and 100°C is discussed.It is shown that the reaction followed second-order rate kinetics.The overall rate constant(k) increased with the increase of temperature.On the basis of the value of k,activation energy(E_a) of the reaction was evaluated.Importantly,it is found that reactant concentration has great effect on the formation of C.I.Acid Blue 9 leuco compound,implying that it is not enough to improve the conversion of N-ethyl-N-(3'-sulfonic acid benzyl) aniline by only prolonging reaction time in the late period of the reaction.展开更多
Dyes are common pollutants in textile wastewaters, and the treatment of the wastewater has now attracted much attention due to its wide application and low biodegradability. In this study, Fe^0/C/Clay ceramics, a kind...Dyes are common pollutants in textile wastewaters, and the treatment of the wastewater has now attracted much attention due to its wide application and low biodegradability. In this study, Fe^0/C/Clay ceramics, a kind of novel micro-electrolysis filler, were sintered and employed in a dynamic micro-electrolysis reactor for synthetic Acid Red 73 (AR73) and Reactive Blue 4 (RB4) wastewater treatment. The effects ofinfluent pH, hydraulic retention time (HRT), and aeration on the decoloration efficiencies of AR73 and RB4 were studied. The optimum conditions for wastewater treatment were: AR73, influent pH of 4, HRT of 2 h and aeration; RB4, influent pH of 5, HRT of 6 h and aeration. Under the optimum conditions, decoloration efficiency of AR73 and RB4 wastewater was 96% and 83%, respectively. Results of UV-vis spectrum scanning demonstrated that the chromophores were broken. Continuous running tests showed that improvement of micro-electrolysis system with Fe^0/C/Clay ceramics for AR73 and RB4 synthetic wastewater treatment could avoid failure of micro-electrolysis reactor, which indicated great potential for the practical application of the ceramics in the field of actual industrial wastewater treatment.展开更多
基金Supported by the National Natural Science Foundation of China(U1608223,21576044,21421005,21536002)the Dalian University of Technology Innovation Team(DUT2016TB12)
文摘A systematic study of the synthesis of C.I.Acid Blue 9 leuco compound in water is reported.The kinetic analysis of experimental data for the condensation reaction between 2-formylbenzenesulfonic acid sodium and N-ethyl-N-(3'-sulfonic acid benzyl) aniline obtained at four different temperatures ranging between 85 and 100°C is discussed.It is shown that the reaction followed second-order rate kinetics.The overall rate constant(k) increased with the increase of temperature.On the basis of the value of k,activation energy(E_a) of the reaction was evaluated.Importantly,it is found that reactant concentration has great effect on the formation of C.I.Acid Blue 9 leuco compound,implying that it is not enough to improve the conversion of N-ethyl-N-(3'-sulfonic acid benzyl) aniline by only prolonging reaction time in the late period of the reaction.
文摘Dyes are common pollutants in textile wastewaters, and the treatment of the wastewater has now attracted much attention due to its wide application and low biodegradability. In this study, Fe^0/C/Clay ceramics, a kind of novel micro-electrolysis filler, were sintered and employed in a dynamic micro-electrolysis reactor for synthetic Acid Red 73 (AR73) and Reactive Blue 4 (RB4) wastewater treatment. The effects ofinfluent pH, hydraulic retention time (HRT), and aeration on the decoloration efficiencies of AR73 and RB4 were studied. The optimum conditions for wastewater treatment were: AR73, influent pH of 4, HRT of 2 h and aeration; RB4, influent pH of 5, HRT of 6 h and aeration. Under the optimum conditions, decoloration efficiency of AR73 and RB4 wastewater was 96% and 83%, respectively. Results of UV-vis spectrum scanning demonstrated that the chromophores were broken. Continuous running tests showed that improvement of micro-electrolysis system with Fe^0/C/Clay ceramics for AR73 and RB4 synthetic wastewater treatment could avoid failure of micro-electrolysis reactor, which indicated great potential for the practical application of the ceramics in the field of actual industrial wastewater treatment.