Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells...Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formationis a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and b HLH transcriptional factors.Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.展开更多
The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function.The Ikaros gene is alternatel...The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function.The Ikaros gene is alternately spliced to produce several isoforms that confer diversity of function and consequently have complicated analysis of the function of Ikaros in vivo.Key features of Ikaros in vivo function are associated with six C2H2 zinc fingers;four of which are alternately incorporated in the production of the various Ikaros isoforms.Although no complete structures are available for the Ikaros protein or any of its family members,considerable evidence has accumulated about the structure of zinc fingers and the role that this structure plays in the functions of the Ikaros family of proteins.This review summarizes the structural aspects of Ikaros zinc fingers,individually,and in tandem to provide a structural context for Ikaros function and to provide a structural basis to inform the design of future experiments with Ikaros and its family members.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 31370215, 31228002 and 31970167)International Scientific and Technological Cooperation Project of Science and Technology Department of Zhejiang Province (Grant No. 2013C24007)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No. Z3110004)Ph.D.Programs Foundation of Ministry of Education of China (Grant No. 20120101110079)
文摘Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formationis a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and b HLH transcriptional factors.Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.
文摘The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function.The Ikaros gene is alternately spliced to produce several isoforms that confer diversity of function and consequently have complicated analysis of the function of Ikaros in vivo.Key features of Ikaros in vivo function are associated with six C2H2 zinc fingers;four of which are alternately incorporated in the production of the various Ikaros isoforms.Although no complete structures are available for the Ikaros protein or any of its family members,considerable evidence has accumulated about the structure of zinc fingers and the role that this structure plays in the functions of the Ikaros family of proteins.This review summarizes the structural aspects of Ikaros zinc fingers,individually,and in tandem to provide a structural context for Ikaros function and to provide a structural basis to inform the design of future experiments with Ikaros and its family members.