期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction 被引量:3
1
作者 Martin Oschatz Nynke Krans +1 位作者 Jingxiu Xie Krijn P.de Jong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期985-993,共9页
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The ca... The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure. 展开更多
关键词 Fischer–Tropsch to olefins synthesis C2–c4 olefins Iron catalysts Promoters Carbon supports
下载PDF
Efficient separation of C_(4) olefins using tantalum pentafluor oxide anion-pillared hybrid microporous material
2
作者 Bin Gao Zhaoqiang Zhang +4 位作者 Jianbo Hu Jiyu Cui Liyuan Chen Xili Cui Huabin Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期49-54,共6页
With the increasing demand for synthetic rubber,the purification of 1,3-butadiene(C_(4)H_(6))is of great industrial significance.Herein,the successful removal of n-butene(n-C_(4)H_(8))and iso-butene(iso-C_(4)H_(8))fro... With the increasing demand for synthetic rubber,the purification of 1,3-butadiene(C_(4)H_(6))is of great industrial significance.Herein,the successful removal of n-butene(n-C_(4)H_(8))and iso-butene(iso-C_(4)H_(8))from 1,3-butadiene(C_(4)H_(6))was realized by synthesizing a novel TaOF_(5)^(2-) anion-pillared ultramicroporous material TaOFFIVE-3-Ni(also referred to as ZU-96,TaOFFIVE=TaOF_(5)^(2-),3=pyrazine).Single-component adsorption isotherms show that TaOFFIVE-3-Ni can achieve the exclusion of n-C_(4)H_(8) and iso-C_(4)H_(8) in the low pressure region(0–30 kPa),and uptake C_(4)H_(6) with a high capacity of 92.78 cm^(3)·cm^(-3)(298 K and 100 kPa).The uptake ratio of C_(4)H_(6)/iso-C_(4)H_(8) on TaOFFIVE-3-Ni was 20.83(298 K and 100 kPa),which was the highest among the state-of-the-art adsorbents reported so far.With the rotation of anion and pyrazine ring,the pore size changes continuously,which makes smaller-size C_(4)H_(6) enter the channel while larger-size n-C_(4)H_(8) and iso-C_(4)H_(8) are completely blocked.The excellent breakthrough performance of TaOFFIVE-3-Ni shows great potential in industrial separation of C4 olefins.The specific adsorption binding sites within ZU-96 was further revealed through the modeling calculation. 展开更多
关键词 Adsorptive separation c4 olefin 13-Butadiene Anion-pillared hybrid microporous material
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部