期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhanced tolerance to drought in transgenic rice plants overexpressing C_4 photosynthesis enzymes 被引量:7
1
作者 Jun-Fei Gu Ming Qiu Jian-Chang Yang 《The Crop Journal》 SCIE CAS 2013年第2期105-114,共10页
Maize-specific pyruvate orthophosphate dikinase(PPDK) was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase(PCK). The wild-type(WT) cultivar Kitaake and t... Maize-specific pyruvate orthophosphate dikinase(PPDK) was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase(PCK). The wild-type(WT) cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments,well-watered(WW), moderate drought(MD) and severe drought(SD), were imposed from 9d post-anthesis till maturity. Leaf physiological and biochemical traits, root activities,biomass, grain yield, and yield components in the untransformed WT and two transgenic rice lines(PPDK and PCK) were systematically studied. Compared with the WT, both transgenic rice lines showed increased leaf photosynthetic rate: by 20%–40% under WW, by45%–60% under MD, and by 80%–120% under SD. The transgenic plants produced 16.1%,20.2% and 20.0% higher grain yields than WT under the WW, MD and SD treatments,respectively. Under the same soil moisture treatments, activities of phosphoenolpyruvate carboxylase(PEPC) and carbonic anhydrase(CA) in transgenic plants were 3–5-fold higher than those in WT plants. Compared with ribulose-1,5-bisphosphate carboxylase, activities of PEPC and CA were less reduced under both MD and SD treatments. The transgenic plants also showed higher leaf water content, stomatal conductance, transpiration efficiency, and root oxidation activity and a stronger active oxygen scavenging system than the WT under all soil moisture treatments, especially MD and SD. The results suggest that drought tolerance is greatly enhanced in transgenic rice plants overexpressing C4photosynthesis enzymes. This study was performed under natural conditions and normal planting density to evaluate yield advantages on a field basis. It may open a new avenue to droughttolerance breeding via overexpression of C4enzymes in rice. 展开更多
关键词 Pyruvate orthophosphate dikinase(PPDK) c4-specific PHOSPHOENOLPYRUVATE carboxylase(PEPc) and PPDK(PcK) Transgenic rice photosynthesis DROUGHT TOLERANcE
下载PDF
转C_4光合基因水稻特征特性及其在两系杂交稻育种中的应用 被引量:23
2
作者 王德正 迟伟 +6 位作者 王守海 焦德茂 吴爽 李霞 李成荃 张云华 罗彦长 《作物学报》 CAS CSCD 北大核心 2004年第3期248-252,共5页
对pepc、ppdk和pepc +ppdk三种转基因水稻农艺性状观察表明 ,与原种Kitaake相比单株有效穗有不同程度的增多 ,单株产量相应提高 ,特别是pepc和ppdk基因聚合后 ,单株有效穗和单株产量分别比受体亲本Kitaake提高 2 9.1%和2 7.0 %。三种转... 对pepc、ppdk和pepc +ppdk三种转基因水稻农艺性状观察表明 ,与原种Kitaake相比单株有效穗有不同程度的增多 ,单株产量相应提高 ,特别是pepc和ppdk基因聚合后 ,单株有效穗和单株产量分别比受体亲本Kitaake提高 2 9.1%和2 7.0 %。三种转基因材料作基因供体分别与受体光敏核不育系培矮 6 4S、2 30 4S和 2 30 6S杂交后 ,这些基因在新的遗传背景下不仅稳定遗传和高水平表达 ,而且表现增穗增产 ,特别当pepc和ppdk基因聚合时 ,与受体相比 ,F1的PEPC活性提高 5 .8~ 18.6倍 ,PPDK活性提高 0 .5~ 1.3倍 ,植株饱和光合速率提高 5 0 %左右。转育的转基因材料结实率有所降低 ,是值得进一步研究的问题。 展开更多
关键词 c4光合基因 水稻 转基因育种 特征特性 两系杂交稻 磷酸烯醇式丙酮酸羧化酶 丙酮酸正磷酸二激酶
下载PDF
Expression Profiles of <i>psbA, ALS, EPSPS</i>, and Other Chloroplastic Genes in Response to PSII-, ALS-, and EPSPS-Inhibitor Treatments in <i>Kochia scoparia</i> 被引量:2
3
作者 Vijay K. Varanasi Shahniyar Bayramov +1 位作者 P. V. Vara Prasad Mithila Jugulam 《American Journal of Plant Sciences》 2017年第3期451-470,共20页
Kochia (Kochia scoparia L. Schrad.), also known as tumbleweed, is an economically important annual C4 broadleaf weed found throughout the US Great Plains. Several herbicides with different modes of action are used in ... Kochia (Kochia scoparia L. Schrad.), also known as tumbleweed, is an economically important annual C4 broadleaf weed found throughout the US Great Plains. Several herbicides with different modes of action are used in the management of kochia. The effect of commonly used herbicides on the expression of their target site(s) and photosynthetic/chloroplastic genes is poorly understood in weed species, including kochia. The objective of this research was to characterize the expression profiles of herbicide target-site genes, KspsbA, KsALS, and KsEPSPS upon treatment with PSII- (e.g. atrazine), ALS- (e.g. chlorsulfuron), and EPSPS- (e.g. glyphosate)-inhibitors, respectively, in kochia. Furthermore, the expression of genes involved in photosynthesis (e.g. KsRubisco, KsCAB, and KsPPDK) was also determined in response to these herbicide treatments. KspsbA was strongly upregulated (>200-fold) 24 h after atrazine treatment. Transcript levels of the KsALS or KsEPSPS genes were 7 and 3-fold higher 24 h after chlorsulfuron or glyphosate treatment, respectively. KsRubisco, a Calvin cycle gene important for CO2 fixation, was upregulated 7 and 2.6-fold 8 and 24 h after glyphosate and chlorsulfuron treatments, whereas it downregulated 8 and 24 h after atrazine treatment. The transcript levels of KsPPDK remained unchanged after glyphosate treatment but increased 1.8-fold and decreased 2-fold at 24 h after chlorsulfuron and atrazine treatments, respectively. KsCAB remained unchanged after chlorsulfuron treatment, but was downregulated after glyphosate and atrazine treatments. The results show that herbicide treatments not only affect the respective target-site gene expression, but also influence the genes involved in the critical photosynthetic pathway. 展开更多
关键词 Kochia scoparia L. Schrad. c4 Herbicide Stress gene Expression PSBA ALS EPSPS photosynthesis Rubisco PPDK cAB
下载PDF
A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis 被引量:6
4
作者 Weichen Huang Lin Zhang +11 位作者 JTravis Columbus Yi Hu Yiyong Zhao Lin Tang Zhenhua Guo Wenli Chen Michael McKain Madelaine Bartlett Chien-Hsun Huang De-Zhu Li Song Ge Hong Ma 《Molecular Plant》 SCIE CAS CSCD 2022年第4期755-777,共23页
Poaceae(the grasses)includes rice,maize,wheat,and other crops,and is the most economically important angiosperm family.Poaceae is also one of the largest plant families,consisting of over 11000 species with a global d... Poaceae(the grasses)includes rice,maize,wheat,and other crops,and is the most economically important angiosperm family.Poaceae is also one of the largest plant families,consisting of over 11000 species with a global distribution that contributes to diverse ecosystems.Poaceae species are classified into 12 subfamilies,with generally strong phylogenetic support for their monophyly.However,many relationships within subfamilies,among tribes and/or subtribes,remain uncertain.To better resolve the Poaceae phylogeny,we generated 342 transcriptomic and seven genomic datasets;these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera,representing 45 tribes and all 12 subfamilies.Over 1200 low-copy nuclear genes were retrieved from these datasets,with several subsets obtained using additional criteria,and used for coalescent analyses to reconstruct a Poaceae phylogeny.Our results strongly support the monophyly of 11 subfamilies;however,the subfamily Puelioideae was separated into two non-sister clades,one for each of the two previously defined tribes,supporting a hypothesis that places each tribe in a separate subfamily.Molecular clock analyses estimated the crown age of Poaceae to be101 million years old.Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis.These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase,which suggests that members of three paralogous subclades(ppc-aL1a,ppc-aL1b,and ppcB2)were recruited as functional C4 ppc genes.This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family. 展开更多
关键词 GRAMINEAE transcriptome nuclear phylogeny molecular clock c4 photosynthesis ppc gene evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部