Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using ny...Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using nystatin perforated whole-cell patch clamp. 10-6-10-4 mol/L Asp acted on NMDA receptors and elicited an inward current (IAsp) at a holding potential (VH) of -40 mV in presence of 10-6 mol/L glycine and absence of Mg2+ extracellularly. CL enhanced NMDA receptor mediated current induced by Asp, but had no effect on threshold concentration, EC50, Hill coefficient as well as maximal-effect concentration and reversal potential of IAsp. The effect had no relationship with holding potential. These results showed that CL could enhance NMDA receptor mediated current to increase [Ca2+]i of neurons by acting on Gly site, thereby inducing epilepsy.展开更多
Expression of transient receptor potential (TRP) channels is widespread with transcripts distributed throughout the brain. All TRP channel subunits are activated following phospholipase C activation and form cation-...Expression of transient receptor potential (TRP) channels is widespread with transcripts distributed throughout the brain. All TRP channel subunits are activated following phospholipase C activation and form cation-selective ion channels. Previous studies examining the existence of TRP channels in hippocampal CA1 pyramidal neurons were based on cultured neurons. Therefore, their relevance for living tissue remains unclear. In the present study, patch-clamp recordings were conducted from CA1 pyramidal neurons in hippocampal slices from 7-day-old rats. Whole-cell currents were obtained from CA1 hippocampal neurons with potentiation effects of 2-aminoethoxydiphenyl borate and lanthanum, revealing that recorded experimental currents were characteristic TRP-like channel currents. Identification of rat hippocampal mRNA transcripts of TRPC4, TRPC5, TRPV1, TRPV2, and TRPV3 channels further verified the expression of characteristic TRP-like channels on rat CA1 hippocampal neurons.展开更多
The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal ...The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.展开更多
Synapse organizers are essential for the development,transmission,and plasticity of synapses.Acting as rare synapse suppressors,the MAM domain containing glycosylphosphatidylinositol anchor(MDGA)proteins contributes t...Synapse organizers are essential for the development,transmission,and plasticity of synapses.Acting as rare synapse suppressors,the MAM domain containing glycosylphosphatidylinositol anchor(MDGA)proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex.A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism.However,MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses.Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy.To address this,we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons.Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus.Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials,vesicular glutamate transporter 1 intensity,and neuronal excitability.These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity.Functionally,evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs.At a behavioral level,memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired,consistent with deficits in long-term potentiation in the CA3-CA1 pathway.Social affiliation,a behavioral analog of social deficits in autism,was similarly compromised.These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits,thereby optimizing this network for plasticity,cognition,and social behaviors.展开更多
Monocarboxylate transporters(MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ...Monocarboxylate transporters(MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning(IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups(sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region(CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia.展开更多
Sevoflurane induces developmental neurotoxicity in mice;however,the underlying mechanisms remain unclear.Triggering receptor expressed on myeloid cells 2(TREM2)is essential for microglia-mediated synaptic refinement d...Sevoflurane induces developmental neurotoxicity in mice;however,the underlying mechanisms remain unclear.Triggering receptor expressed on myeloid cells 2(TREM2)is essential for microglia-mediated synaptic refinement during the early stages of brain development.We explored the effects of TREM2 on dendritic spine pruning during sevoflurane-induced developmental neurotoxicity in mice.Mice were anaesthetized with sevoflurane on postnatal days 6,8,and 10.Behavioral performance was assessed using the open field test and Morris water maze test.Genetic knockdown of TREM2 and overexpression of TREM2 by stereotaxic injection were used for mechanistic experiments.Western blotting,immunofluorescence,electron microscopy,three-dimensional reconstruction,Golgi staining,and whole-cell patch-clamp recordings were performed.Sevoflurane exposures upregulated the protein expression of TREM2,increased microglia-mediated pruning of dendritic spines,and reduced synaptic multiplicity and excitability of CA1 neurons.TREM2 genetic knockdown significantly decreased dendritic spine pruning,and partially aggravated neuronal morphological abnormalities and cognitive impairments in sevoflurane-treated mice.In contrast,TREM2 overexpression enhanced microglia-mediated pruning of dendritic spines and rescued neuronal morphological abnormalities and cognitive dysfunction.TREM2 exerts a protective role against neurocognitive impairments in mice after neonatal exposures to sevoflurane by enhancing microglia-mediated pruning of dendritic spines in CA1 neurons.This provides a potential therapeutic target in the prevention of sevoflurane-induced developmental neurotoxicity.展开更多
Extrasynaptic GABAA receptors (GABAARs)-mediated tonic inhibition is reported to involve in the patho- genesis of epilepsy. In this study, we used cyclo- thiazide (CTZ)-induced in vitro brain slice seizure model t...Extrasynaptic GABAA receptors (GABAARs)-mediated tonic inhibition is reported to involve in the patho- genesis of epilepsy. In this study, we used cyclo- thiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABAARS by 4,5,6,7-tetra- hydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs)in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the 6-subunit of the GABAAR, an extrasynaptic specific GABAAR subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABAARs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABAARs plays a prominent role in seizure generation.展开更多
基金This project was supported by a grant from the National Natural Science Foundation of China !(No. 39330210).
文摘Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using nystatin perforated whole-cell patch clamp. 10-6-10-4 mol/L Asp acted on NMDA receptors and elicited an inward current (IAsp) at a holding potential (VH) of -40 mV in presence of 10-6 mol/L glycine and absence of Mg2+ extracellularly. CL enhanced NMDA receptor mediated current induced by Asp, but had no effect on threshold concentration, EC50, Hill coefficient as well as maximal-effect concentration and reversal potential of IAsp. The effect had no relationship with holding potential. These results showed that CL could enhance NMDA receptor mediated current to increase [Ca2+]i of neurons by acting on Gly site, thereby inducing epilepsy.
基金the Medical Scientific Research Foundation of Guangdong Province,No.A2006372the National Natural Science Foundation of China,No.U0632007+3 种基金the Natural Science Foundation of Guangdong Province,No.9351051501000003the Major Program of Natural Science Research of Higher Learning School of Guangdong Province,No.06Z007the Key Project of Science and Technology of Guangzhou City,No.2007zl-E0081the Program for Changjiang Scholars and Innovative Research Team,No.IRT0731
文摘Expression of transient receptor potential (TRP) channels is widespread with transcripts distributed throughout the brain. All TRP channel subunits are activated following phospholipase C activation and form cation-selective ion channels. Previous studies examining the existence of TRP channels in hippocampal CA1 pyramidal neurons were based on cultured neurons. Therefore, their relevance for living tissue remains unclear. In the present study, patch-clamp recordings were conducted from CA1 pyramidal neurons in hippocampal slices from 7-day-old rats. Whole-cell currents were obtained from CA1 hippocampal neurons with potentiation effects of 2-aminoethoxydiphenyl borate and lanthanum, revealing that recorded experimental currents were characteristic TRP-like channel currents. Identification of rat hippocampal mRNA transcripts of TRPC4, TRPC5, TRPV1, TRPV2, and TRPV3 channels further verified the expression of characteristic TRP-like channels on rat CA1 hippocampal neurons.
基金supported by the National Natural Science Foundation of China,No.81201984the Scientific Research Project of Shaanxi Provincial Health Department in China,No.2010E03the Yulin Municipal Science and Technology Research and Development Project,No.Sf12-06
文摘The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.
基金supported by the National Natural Science Foundation of China(82001203,82173819,81871012,and 81571263)the Scientific Research Fund of Zhejiang Provincial Education Department(Y201839276)+3 种基金the Scientific Research Foundation of Zhejiang University City College(X-202103)the R&D Project of Zhejiang(2022C03034)the Natural Science Foundation of Zhejiang Province(LQ23C090001)a Canada Research Chair Award(P2018-0246).
文摘Synapse organizers are essential for the development,transmission,and plasticity of synapses.Acting as rare synapse suppressors,the MAM domain containing glycosylphosphatidylinositol anchor(MDGA)proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex.A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism.However,MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses.Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy.To address this,we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons.Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus.Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials,vesicular glutamate transporter 1 intensity,and neuronal excitability.These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity.Functionally,evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs.At a behavioral level,memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired,consistent with deficits in long-term potentiation in the CA3-CA1 pathway.Social affiliation,a behavioral analog of social deficits in autism,was similarly compromised.These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits,thereby optimizing this network for plasticity,cognition,and social behaviors.
基金supported by a Priority Research Centers Program grant(NRF-2009-0093812)through the National Research Foundation of Korea funded by the Ministry of Science,ICT and Future Planningby 2014 Research Grant from Kangwon National University
文摘Monocarboxylate transporters(MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning(IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups(sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region(CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia.
基金National Natural Science Foundation of China(82072130 and 82001126)Key Medical Research Projects in Jiangsu Province(ZD2022021)+6 种基金Six Talent Peaks Project in Jiangsu Province(WSN-022)Suzhou Clinical Medical Center for Anaesthesiology(Szlcyxzxj202102)Jiangsu Medical Association Anaesthesia Research Project(SYH-32021-0036(2021031))Suzhou Medical Health Science and Technology Innovation Project(SKY2022136)Jiangsu Provincial Colleges of Natural Science General Program(22KJD320002)Health Talent Plan Project in Suzhou(GSWS2022007)Gusu Health Talent Project of Soochow(GSWS2021062).
文摘Sevoflurane induces developmental neurotoxicity in mice;however,the underlying mechanisms remain unclear.Triggering receptor expressed on myeloid cells 2(TREM2)is essential for microglia-mediated synaptic refinement during the early stages of brain development.We explored the effects of TREM2 on dendritic spine pruning during sevoflurane-induced developmental neurotoxicity in mice.Mice were anaesthetized with sevoflurane on postnatal days 6,8,and 10.Behavioral performance was assessed using the open field test and Morris water maze test.Genetic knockdown of TREM2 and overexpression of TREM2 by stereotaxic injection were used for mechanistic experiments.Western blotting,immunofluorescence,electron microscopy,three-dimensional reconstruction,Golgi staining,and whole-cell patch-clamp recordings were performed.Sevoflurane exposures upregulated the protein expression of TREM2,increased microglia-mediated pruning of dendritic spines,and reduced synaptic multiplicity and excitability of CA1 neurons.TREM2 genetic knockdown significantly decreased dendritic spine pruning,and partially aggravated neuronal morphological abnormalities and cognitive impairments in sevoflurane-treated mice.In contrast,TREM2 overexpression enhanced microglia-mediated pruning of dendritic spines and rescued neuronal morphological abnormalities and cognitive dysfunction.TREM2 exerts a protective role against neurocognitive impairments in mice after neonatal exposures to sevoflurane by enhancing microglia-mediated pruning of dendritic spines in CA1 neurons.This provides a potential therapeutic target in the prevention of sevoflurane-induced developmental neurotoxicity.
基金supported by grants from the National Natural Science Foundation of China(31129003,81100815,81171224, 81401082,and 81301108)the Science and Technology Commission of Shanghai Municipality,China(13DJ1400302, 13ZR1406500,and 11ZR1401700)
文摘Extrasynaptic GABAA receptors (GABAARs)-mediated tonic inhibition is reported to involve in the patho- genesis of epilepsy. In this study, we used cyclo- thiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABAARS by 4,5,6,7-tetra- hydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs)in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the 6-subunit of the GABAAR, an extrasynaptic specific GABAAR subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABAARs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABAARs plays a prominent role in seizure generation.