期刊文献+
共找到2,394篇文章
< 1 2 120 >
每页显示 20 50 100
Contribution Tracking Feature Selection (CTFS) Based on the Fusion of Sparse Autoencoder and Mutual Information
1
作者 Yifan Yu Dazhi Wang +2 位作者 Yanhua Chen Hongfeng Wang Min Huang 《Computers, Materials & Continua》 SCIE EI 2024年第12期3761-3780,共20页
For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper featu... For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper feature selection methodologies typically require extensive model training and evaluation,which cannot deliver desired outcomes within a reasonable computing time.In this paper,an innovative wrapper approach termed Contribution Tracking Feature Selection(CTFS)is proposed for feature selection of large-scale data,which can locate informative features without population-level evolution.In other words,fewer evaluations are needed for CTFS compared to other evolutionary methods.We initially introduce a refined sparse autoencoder to assess the prominence of each feature in the subsequent wrapper method.Subsequently,we utilize an enhanced wrapper feature selection technique that merges Mutual Information(MI)with individual feature contributions.Finally,a fine-tuning contribution tracking mechanism discerns informative features within the optimal feature subset,operating via a dominance accumulation mechanism.Experimental results for multiple classification performance metrics demonstrate that the proposed method effectively yields smaller feature subsets without degrading classification performance in an acceptable runtime compared to state-of-the-art algorithms across most large-scale benchmark datasets. 展开更多
关键词 feature selection contribution tracking sparse autoencoders mutual information
下载PDF
ECO++:Adaptive deep feature fusion target tracking method in complex scene
2
作者 Yuhan Liu He Yan +2 位作者 Qilie Liu Wei Zhang Junbin Huang 《Digital Communications and Networks》 CSCD 2024年第5期1352-1364,共13页
Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded an... Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets. 展开更多
关键词 Deep features Adaptive feature fusion Correlation filtering Target tracking Data augmentation
下载PDF
Tracking facial features with occlusions 被引量:3
3
作者 MARKIN Evgeny PRAKASH Edmond C. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第7期1282-1288,共7页
Facial expression recognition consists of determining what kind of emotional content is presented in a human face. The problem presents a complex area for exploration, since it encompasses face acquisition, facial fea... Facial expression recognition consists of determining what kind of emotional content is presented in a human face. The problem presents a complex area for exploration, since it encompasses face acquisition, facial feature tracking, facial ex- pression classification. Facial feature tracking is of the most interest. Active Appearance Model (AAM) enables accurate tracking of facial features in real-time, but lacks occlusions and self-occlusions. In this paper we propose a solution to improve the accuracy of fitting technique. The idea is to include occluded images into AAM training data. We demonstrate the results by running ex- periments using gradient descent algorithm for fitting the AAM. Our experiments show that using fitting algorithm with occluded training data improves the fitting quality of the algorithm. 展开更多
关键词 Active Appearance Model (AAM) Facial feature tracking Computer vision
下载PDF
Robust Visual Tracking with Hierarchical Deep Features Weighted Fusion
4
作者 Dianwei Wang Chunxiang Xu +3 位作者 Daxiang Li Ying Liu Zhijie Xu Jing Wang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期770-776,共7页
To solve the problem of low robustness of trackers under significant appearance changes in complex background,a novel moving target tracking method based on hierarchical deep features weighted fusion and correlation f... To solve the problem of low robustness of trackers under significant appearance changes in complex background,a novel moving target tracking method based on hierarchical deep features weighted fusion and correlation filter is proposed.Firstly,multi-layer features are extracted by a deep model pre-trained on massive object recognition datasets.The linearly separable features of Relu3-1,Relu4-1 and Relu5-4 layers from VGG-Net-19 are especially suitable for target tracking.Then,correlation filters over hierarchical convolutional features are learned to generate their correlation response maps.Finally,a novel approach of weight adjustment is presented to fuse response maps.The maximum value of the final response map is just the location of the target.Extensive experiments on the object tracking benchmark datasets demonstrate the high robustness and recognition precision compared with several state-of-the-art trackers under the different conditions. 展开更多
关键词 visual tracking convolution neural network correlation filter feature fusion
下载PDF
Research on Deep Knowledge Tracking Incorporating Rich Features and Forgetting Behaviors
5
作者 Lasheng Yu Xiaopeng Zheng 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第4期1-6,共6页
The individualization of education and teaching through the computer⁃aided education system provides students with personalized learning,so that each student can obtain the knowledge they need.At this stage,there are ... The individualization of education and teaching through the computer⁃aided education system provides students with personalized learning,so that each student can obtain the knowledge they need.At this stage,there are a lot of intelligent tutoring systems.In these systems,students􀆳learning actions are tracked in real⁃time,and there are a lot of available data.From these data,personalized education that suits each student can be mined.To improve the quality of education,some models for predicting students􀆳next practice have been produced,such as Bayesian Knowledge Tracing(BKT),Performance Factor Analysis(PFA),and Deep Knowledge Tracing(DKT)with the development of deep learning.However,the model only considers the knowledge component and correctness of the problem,ignoring the breadth of other characteristics of the information collected by the intelligent tutoring system,the lag time of the previous interaction,the number of past attempts to a problem,and situations that students have forgotten the knowledge.Although some studies consider forgetting and rich information when modeling student knowledge,they often ignore student learning sequences.The main contribution of this paper is in two aspects.One is to transform the input into a position feature vector by introducing an auto⁃encoding network layer and to carry out multiple sets of bad political combinations.The other is to consider repeated time intervals,sequence time intervals,and the number of attempts to simulate forgetting behavior.This paper proposes an adaptive algorithm for the original DKT model.By using the stacked auto⁃encoder network,the input dimension is reduced to half of the original and the original features are retained and consider the forgetting memory behavior according to the time sequence of students􀆳learning.The model proposed in this paper has been experimented on two public data sets to improve the original accuracy. 展开更多
关键词 LSTM knowledge of tracking DKT stacked autoencoder forgetting behavior feature information
下载PDF
MOVING OBJECT TRACKING IN DYNAMIC IMAGE SEQUENCE BASED ON ESTIMATION OF MOTION VECTORS OF FEATURE POINTS 被引量:2
6
作者 黎宁 周建江 张星星 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期295-300,共6页
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor... An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence. 展开更多
关键词 motion compensation motion estimation feature extraction moving object tracking dynamic image sequence
下载PDF
磁共振feature tracking初步评价终末期肾病患者心肌形变 被引量:4
7
作者 牟安娜 李智勇 +4 位作者 张晨 李梦颖 宋清伟 金凤强 刘爱连 《中国医学影像技术》 CSCD 北大核心 2016年第6期881-884,共4页
目的采用心脏磁共振feature tracking(CMR-FT)技术初步分析终末期肾病患者左心室心肌形变各参数的变化情况。方法对10例正常志愿者和9例终末期肾病接受血液透析治疗的患者行1.5T心脏非对比增强、FIESTA序列电影成像,并采用feature track... 目的采用心脏磁共振feature tracking(CMR-FT)技术初步分析终末期肾病患者左心室心肌形变各参数的变化情况。方法对10例正常志愿者和9例终末期肾病接受血液透析治疗的患者行1.5T心脏非对比增强、FIESTA序列电影成像,并采用feature tracking(FT)2D模型对左心室运动及整体心肌形变情况进行定量分析。结果终末期肾病患者左心室心肌质量[(132.70±44.44)g]大于正常志愿者[(80.00±11.29)g,P<0.05]。终末期肾病患者左心室心肌整体径向应变、环向应变、径向收缩期峰值运动速度、径向舒张期峰值运动速度均低于健康志愿者[(22.52±10.41)%vs(39.46±7.10)%,(-12.57±3.91)%vs(-19.80±2.11)%,(22.70±5.72)mm/s vs(34.77±3.81)mm/s,(-24.71±8.83)mm/s vs(-43.88±8.89)mm/s,P均<0.05)。而终末期肾病患者和正常志愿者的左心室射血分数、左心室舒张末期容积、左心室收缩末期容积差异无统计学意义(P均>0.05)。结论 CMR-FT技术能够定量评价终末期肾病患者左心室心肌运动及形变情况。 展开更多
关键词 磁共振成像 特征追踪 终末期肾病 形变
下载PDF
Electronic image stabilization system based on global feature tracking 被引量:7
8
作者 Zhu Juanjuan Guo Baolong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期228-233,共6页
A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated ... A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions. 展开更多
关键词 electronic image stabilization global motion estimation feature tracking Kalman filter.
下载PDF
LQTTrack:Multi-Object Tracking by Focusing on Low-Quality Targets Association
9
作者 Suya Li Ying Cao +2 位作者 Hengyi Ren Dongsheng Zhu Xin Xie 《Computers, Materials & Continua》 SCIE EI 2024年第10期1449-1470,共22页
Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowq... Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack). 展开更多
关键词 Low-quality targets association strategy feature fusion multi-object tracking tracking-by-detection
下载PDF
Object Tracking Using a Particle Filter with SURF Feature 被引量:1
10
作者 Shinfeng D.Lin Yu-Ting Jiang Jia-Jen Lin 《Journal of Electronic Science and Technology》 CAS 2014年第3期339-344,共6页
In this paper, a novel object tracking based on a particle filter and speeded up robust feature (SURF) is proposed, which uses both color and SURF features. The SURF feature makes the tracking result more robust. On... In this paper, a novel object tracking based on a particle filter and speeded up robust feature (SURF) is proposed, which uses both color and SURF features. The SURF feature makes the tracking result more robust. On the other hand, the particle selection can lead to save time. In addition, we also consider the matched particle applicable to calculating the SURF weight. Owing to the color, spatial, and SURF features being adopted, this method is more robust than the traditional color-based appearance model. Experimental results demonstrate the robustness and accurate tracking results with challenging sequences. Besides, the proposed method outperforms other methods during the intersection of similar color and object's partial occlusion. 展开更多
关键词 Object tracking OCCLUSION particle filter SURF feature
下载PDF
Real-Time Visual Tracking with Compact Shape and Color Feature 被引量:1
11
作者 Zhenguo Gao Shixiong Xia +4 位作者 Yikun Zhang Rui Yao Jiaqi Zhao Qiang Niu Haifeng Jiang 《Computers, Materials & Continua》 SCIE EI 2018年第6期509-521,共13页
The colour feature is often used in the object tracking.The tracking methods extract the colour features of the object and the background,and distinguish them by a classifier.However,these existing methods simply use ... The colour feature is often used in the object tracking.The tracking methods extract the colour features of the object and the background,and distinguish them by a classifier.However,these existing methods simply use the colour information of the target pixels and do not consider the shape feature of the target,so that the description capability of the feature is weak.Moreover,incorporating shape information often leads to large feature dimension,which is not conducive to real-time object tracking.Recently,the emergence of visual tracking methods based on deep learning has also greatly increased the demand for computing resources of the algorithm.In this paper,we propose a real-time visual tracking method with compact shape and colour feature,which forms low dimensional compact shape and colour feature by fusing the shape and colour characteristics of the candidate object region,and reduces the dimensionality of the combined feature through the Hash function.The structural classification function is trained and updated online with dynamic data flow for adapting to the new frames.Further,the classification and prediction of the object are carried out with structured classification function.The experimental results demonstrate that the proposed tracker performs superiorly against several state-of-the-art algorithms on the challenging benchmark dataset OTB-100 and OTB-13. 展开更多
关键词 Visual tracking compact feature colour feature structural learning
下载PDF
Internal Defects Detection Method of the Railway Track Based on Generalization Features Cluster Under Ultrasonic Images 被引量:1
12
作者 Fupei Wu Xiaoyang Xie +1 位作者 Jiahua Guo Qinghua Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期364-381,共18页
There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods... There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model. 展开更多
关键词 Railway track Generalization features cluster Defects classification Ultrasonic image Defects detection
下载PDF
Soft Tissue Feature Tracking Based on Deep Matching Network 被引量:1
13
作者 Siyu Lu Shan Liu +4 位作者 Pengfei Hou Bo Yang Mingzhe Liu Lirong Yin Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期363-379,共17页
Research in the field ofmedical image is an important part of themedical robot to operate human organs.Amedical robot is the intersection ofmulti-disciplinary research fields,in whichmedical image is an important dire... Research in the field ofmedical image is an important part of themedical robot to operate human organs.Amedical robot is the intersection ofmulti-disciplinary research fields,in whichmedical image is an important direction and has achieved fruitful results.In this paper,amethodof soft tissue surface feature tracking basedonadepthmatching network is proposed.This method is described based on the triangular matching algorithm.First,we construct a self-made sample set for training the depth matching network from the first N frames of speckle matching data obtained by the triangle matching algorithm.The depth matching network is pre-trained on the ORL face data set and then trained on the self-made training set.After the training,the speckle matching is carried out in the subsequent frames to obtain the speckle matching matrix between the subsequent frames and the first frame.From this matrix,the inter-frame feature matching results can be obtained.In this way,the inter-frame speckle tracking is completed.On this basis,the results of this method are compared with the matching results based on the convolutional neural network.The experimental results show that the proposed method has higher matching accuracy.In particular,the accuracy of the MNIST handwritten data set has reached more than 90%. 展开更多
关键词 Soft tissue feature tracking deep matching network
下载PDF
A Multiple Random Feature Extraction Algorithm for Image Object Tracking 被引量:1
14
作者 Lan-Rong Dung Shih-Chi Wang Yin-Yi Wu 《Journal of Signal and Information Processing》 2018年第1期63-71,共9页
This paper proposes an object-tracking algorithm with multiple randomly-generated features. We mainly improve the tracking performance which is sometimes good and sometimes bad in compressive tracking. In compressive ... This paper proposes an object-tracking algorithm with multiple randomly-generated features. We mainly improve the tracking performance which is sometimes good and sometimes bad in compressive tracking. In compressive tracking, the image features are generated by random projection. The resulting image features are affected by the random numbers so that the results of each execution are different. If the obvious features of the target are not captured, the tracker is likely to fail. Therefore the tracking results are inconsistent for each execution. The proposed algorithm uses a number of different image features to track, and chooses the best tracking result by measuring the similarity with the target model. It reduces the chances to determine the target location by the poor image features. In this paper, we use the Bhattacharyya coefficient to choose the best tracking result. The experimental results show that the proposed tracking algorithm can greatly reduce the tracking errors. The best performance improvements in terms of center location error, bounding box overlap ratio and success rate are from 63.62 pixels to 15.45 pixels, from 31.75% to 64.48% and from 38.51% to 82.58%, respectively. 展开更多
关键词 OBJECT tracking featurE EXTRACTION IMAGE Processing
下载PDF
Multi-feature integration kernel particle filtering target tracking 被引量:1
15
作者 初红霞 张积宾 王科俊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第6期29-34,共6页
In light of degradation of particle filtering and robust weakness in the utilization of single feature tracking,this paper presents a kernel particle filtering tracking method based on multi-feature integration.In thi... In light of degradation of particle filtering and robust weakness in the utilization of single feature tracking,this paper presents a kernel particle filtering tracking method based on multi-feature integration.In this paper,a new weight upgrading method is given out during kernel particle filtering at first,and then robust tracking is realized by integrating color and texture features under the framework of kernel particle filtering.Space histogram and integral histogram is adopted to calculate color and texture features respectively.These two calculation methods effectively overcome their own defectiveness,and meanwhile,improve the real timing for particle filtering.This algorithm has also improved sampling effectiveness,resolved redundant calculation for particle filtering and degradation of particles.Finally,the experiment for target tracking is realized by using the method under complicated background and shelter.Experiment results show that the method can reliably and accurately track target and deal with target sheltering situation properly. 展开更多
关键词 kernel particle filtering multi-feature integration spatiograms integral histogrom tracking
下载PDF
An Adaptive Padding Correlation Filter With Group Feature Fusion for Robust Visual Tracking
16
作者 Zihang Feng Liping Yan +1 位作者 Yuanqing Xia Bo Xiao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1845-1860,共16页
In recent visual tracking research,correlation filter(CF)based trackers become popular because of their high speed and considerable accuracy.Previous methods mainly work on the extension of features and the solution o... In recent visual tracking research,correlation filter(CF)based trackers become popular because of their high speed and considerable accuracy.Previous methods mainly work on the extension of features and the solution of the boundary effect to learn a better correlation filter.However,the related studies are insufficient.By exploring the potential of trackers in these two aspects,a novel adaptive padding correlation filter(APCF)with feature group fusion is proposed for robust visual tracking in this paper based on the popular context-aware tracking framework.In the tracker,three feature groups are fused by use of the weighted sum of the normalized response maps,to alleviate the risk of drift caused by the extreme change of single feature.Moreover,to improve the adaptive ability of padding for the filter training of different object shapes,the best padding is selected from the preset pool according to tracking precision over the whole video,where tracking precision is predicted according to the prediction model trained by use of the sequence features of the first several frames.The sequence features include three traditional features and eight newly constructed features.Extensive experiments demonstrate that the proposed tracker is superior to most state-of-the-art correlation filter based trackers and has a stable improvement compared to the basic trackers. 展开更多
关键词 Adaptive padding context information correlation filter(CF) feature group fusion robust visual tracking
下载PDF
Anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch
17
作者 Hu Zhentao Mao Yihao +1 位作者 Fu Chunling Liu Xianxing 《High Technology Letters》 EI CAS 2020年第4期402-410,共9页
Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Fir... Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Firstly,the occlusion judgment is realized by extracting and utilizing deep feature of pedestrian’s appearance,and then the scale adaptive kernelized correlation filter is introduced to implement pedestrian tracking without occlusion.Secondly,Karman filter is introduced to predict the location of occluded pedestrian position.Finally,the deep feature is used to the rematch of pedestrian in the reappearance process.Simulation experiment and analysis show that the proposed algorithm can effectively detect and rematch pedestrian under the condition of frequent or long-term occlusion. 展开更多
关键词 pedestrian tracking correlation filter Kalman filter deep feature
下载PDF
IMM/MHT FUSING FEATURE INFORMATION IN VISUAL TRACKING
18
作者 Li Shuangquan Sun Shuyan Jiang Sheng Huang Zhipei Wu Jiankang 《Journal of Electronics(China)》 2009年第6期765-770,共6页
In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Int... In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Interactive Multiple Model (IMM) estimator and feature fusion. New algorithm greatly improves the tracking performance due to the fact that IMM estimator provides better estimation and feature information enhances the accuracy of data association. The new algorithm is tested by tracking tropical fish in fish container. Experimental result shows that this algorithm can significantly reduce tracking lost rate and restrain the noises with higher computational effectiveness when compares with traditional MHT. 展开更多
关键词 Multiple Hypothesis tracking (MHT) Interacting Multiple Model (IMM) feature information fusion Data association
下载PDF
Underground Coal Mine Target Tracking via Multi-Feature Joint Sparse Representation
19
作者 Yan Lu Qingxiang Huang 《Journal of Computer and Communications》 2021年第3期118-132,共15页
Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this stud... Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this study, we propose an underground coal mine personnel target tracking method using multi-feature joint sparse representation. First, with a particle filter framework, the global and local multiple features of the target template and candidate particles are extracted. Second, each of the candidate particles is sparsely represented by a dictionary template, and reconstruction is achieved after solving the sparse coefficient. Last, the particle with the lowest reconstruction error is deemed the tracking result. To validate the effectiveness of the proposed algorithm, we compare the proposed method with three commonly employed tracking algorithms. The results show that the proposed method is able to reliably track the target in various scenarios, such as occlusion and illumination change, which generates better tracking results and validates the feasibility and effectiveness of the proposed method. 展开更多
关键词 Underground Coal Mine Sparse Representation Particle Filter Multi-feature Target-tracking
下载PDF
基于Candide-3模型的姿态表情人脸识别研究 被引量:1
20
作者 杜杏菁 白廷柱 何玉青 《计算机工程与设计》 CSCD 北大核心 2012年第3期1017-1021,共5页
针对姿态表情严重影响人脸识别准确率的问题,基于Candide-3模型的简化,提出了形状表情关键点拟合的人脸几何结构重建和基于三角网格模型的纹理映射的方法,该方法确定关键特征点,根据人脸的几何结构信息确定姿态角,提取Candide-3模型形... 针对姿态表情严重影响人脸识别准确率的问题,基于Candide-3模型的简化,提出了形状表情关键点拟合的人脸几何结构重建和基于三角网格模型的纹理映射的方法,该方法确定关键特征点,根据人脸的几何结构信息确定姿态角,提取Candide-3模型形状表情对应点,调整模型参数,进行几何结构重建;对几何结构中每个三角网格模型进行纹理影射,得到逼真的特定人脸模型。实验结果表明,该方法提高了人脸重建速度,达到减弱姿态表情对人脸识别影响的目的。 展开更多
关键词 姿态角确定 特征点提取 人脸重建 candide-3模型 人脸表情
下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部