期刊文献+
共找到797篇文章
< 1 2 40 >
每页显示 20 50 100
基于多交叉置换扩增和纳米生物传感技术快速检测肺炎支原体方法的建立
1
作者 肖飞 郑宝英 +8 位作者 徐文健 伏瑾 黄小兰 孙春荣 贾楠 张裕 许峥 周娟 王毅 《遵义医科大学学报》 2024年第5期513-521,共9页
目的建立一种简单、灵敏、快速的肺炎支原体(MP)检测方法,并对其应用性进行验证和评价。方法利用多交叉置换扩增(MCDA)技术对肺炎支原体特异基因CARDS毒素基因进行扩增,利用侧流免疫层析生物传感(LFB)技术读取扩增结果,命名该方法为MP-M... 目的建立一种简单、灵敏、快速的肺炎支原体(MP)检测方法,并对其应用性进行验证和评价。方法利用多交叉置换扩增(MCDA)技术对肺炎支原体特异基因CARDS毒素基因进行扩增,利用侧流免疫层析生物传感(LFB)技术读取扩增结果,命名该方法为MP-MCDA-LFB。分析扩增反应在60~67℃(间隔1℃)的扩增效率,筛选最适反应温度;分析分别扩增10、20、30、40 min时能够检测到的最低核酸浓度,筛选最佳反应时间。利用10倍系列稀释的肺炎支原体核酸分析MP-MCDA-LFB方法的灵敏度和检测限,利用35株非肺炎支原体菌株分析MP-MCDA-LFB方法的特异性。利用MP-MCDA-LFB方法检测80份疑似MP感染的临床样本,并与RT-PCR法检测结果进行比较,分析MP-MCDA-LFB方法的临床应用性。结果MP-MCDA-LFB能够实现对肺炎支原体CARDS毒素基因的快速检测。其最佳反应温度为63℃,最短反应时间为40 min,整个检测过程可在1 h内。MP-MCDA-LFB方法具有较高的灵敏度和特异性,其检测限低至45 ng/L,与其他临床表现相似的病原体无交叉反应,特异性为100%。MP-MCDA-LFB方法从80份临床样本中检出45份阳性样本(56.3%),检出率与RT-PCR方法一致。结论本研究建立的以CARDS毒素基因为靶标的MP-MCDA-LFB检测方法具有简单、快速、灵敏度高、特异性强的优点,在基层医疗机构和现场检测具有较好的应用潜力。 展开更多
关键词 肺炎支原体 多交叉置换扩增技术 侧流免疫层析生物传感技术 CARDS毒素基因 RT-PCR
下载PDF
CARD6在脓毒症心肌损伤中的机制研究
2
作者 李一民 石宁宁 +2 位作者 曲央旺姆 辛勇 周吴刚 《上海医药》 CAS 2024年第5期39-42,69,共5页
目的:探讨CARD6在脓毒症心肌损伤中的调节机制。方法:将C57BL/6小鼠随机分为对照组与模型组。采用LPS腹腔注射法构建脓毒症心肌损伤小鼠模型,RT-qPCR检测小鼠心肌组织中CARD6、caspase-1的mRNA水平。体外实验则采用LPS刺激转染CARD6过... 目的:探讨CARD6在脓毒症心肌损伤中的调节机制。方法:将C57BL/6小鼠随机分为对照组与模型组。采用LPS腹腔注射法构建脓毒症心肌损伤小鼠模型,RT-qPCR检测小鼠心肌组织中CARD6、caspase-1的mRNA水平。体外实验则采用LPS刺激转染CARD6过表达质粒的H9C2细胞,检测caspase-1、细胞活力、CK-MB水平。结果:与对照组相比,模型组小鼠心肌组织中LDH、CK-MB含量,caspase-1表达水平上升,提示脓毒症导致小鼠心肌损伤,而CARD6表达水平明显降低。体外实验发现CARD6表达水平呈下降趋势,转染含有CARD6的过表达质粒后细胞释放CK-MB的水平降低、细胞活力增加、caspase-1水平降低。结论:CARD6可改善脓毒症所致心肌损伤,其机制可能与caspase-1介导的细胞焦亡相关。 展开更多
关键词 CARD6 CASPASE-1 细胞焦亡 脓毒症 心肌损伤
下载PDF
The real-time dynamic liquid level calculation method of the sucker rod well based on multi-view features fusion
3
作者 Cheng-Zhe Yin Kai Zhang +4 位作者 Jia-Yuan Liu Xin-Yan Wang Min Li Li-Ming Zhang Wen-Sheng Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3575-3586,共12页
In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ... In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields. 展开更多
关键词 Dynamic liquid level Multi view Features fusion Sucker rod well Dynamometer cards
下载PDF
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning
4
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card Working condition recognition Deep learning Time-frequency signature Time-frequency signature matrix
下载PDF
A Review of Lightweight Security and Privacy for Resource-Constrained IoT Devices
5
作者 Sunil Kumar Dilip Kumar +3 位作者 Ramraj Dangi Gaurav Choudhary Nicola Dragoni Ilsun You 《Computers, Materials & Continua》 SCIE EI 2024年第1期31-63,共33页
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ... The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio. 展开更多
关键词 IOT a sensor device LIGHTWEIGHT CRYPTOGRAPHY block cipher smart card security and privacy
下载PDF
Credit Card Fraud Detection Using Improved Deep Learning Models
6
作者 Sumaya S.Sulaiman Ibraheem Nadher Sarab M.Hameed 《Computers, Materials & Continua》 SCIE EI 2024年第1期1049-1069,共21页
Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown pr... Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown promise in several fields,including detecting credit card fraud.However,the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters.This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data,thereby improving fraud detection.Three deep learning models:AutoEncoder(AE),Convolution Neural Network(CNN),and Long Short-Term Memory(LSTM)are proposed to investigate how hyperparameter adjustment impacts the efficacy of deep learning models used to identify credit card fraud.The experiments conducted on a European credit card fraud dataset using different hyperparameters and three deep learning models demonstrate that the proposed models achieve a tradeoff between detection rate and precision,leading these models to be effective in accurately predicting credit card fraud.The results demonstrate that LSTM significantly outperformed AE and CNN in terms of accuracy(99.2%),detection rate(93.3%),and area under the curve(96.3%).These proposed models have surpassed those of existing studies and are expected to make a significant contribution to the field of credit card fraud detection. 展开更多
关键词 Card fraud detection hyperparameter tuning deep learning autoencoder convolution neural network long short-term memory RESAMPLING
下载PDF
A Self-Adapting and Efficient Dandelion Algorithm and Its Application to Feature Selection for Credit Card Fraud Detection
7
作者 Honghao Zhu MengChu Zhou +1 位作者 Yu Xie Aiiad Albeshri 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期377-390,共14页
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all... A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods. 展开更多
关键词 Credit card fraud detection(CCFD) dandelion algorithm(DA) feature selection normal sowing operator
下载PDF
CARD11 serves as a therapeutic biomarker for the drug therapies of ccRCC
8
作者 KAIWEN TIAN HANZHONG CHEN +6 位作者 QIANQIAN WANG FENGLIAN JIANG CHUNXIANG FENG TENG LI XIAOYONG PU YANLIN TANG JIUMIN LIU 《BIOCELL》 SCIE 2024年第5期817-834,共18页
Background:The incidence of clear cell renal cell carcinoma(ccRCC)is globally high;however,despite the introduction of innovative drug therapies,there remains a lack of effective biomarkers for evaluating treatment re... Background:The incidence of clear cell renal cell carcinoma(ccRCC)is globally high;however,despite the introduction of innovative drug therapies,there remains a lack of effective biomarkers for evaluating treatment response.Recently,Caspase recruiting domain-containing protein 11(CARD11)has garnered attention due to its significant association with tumor development and the immune system.Methods:The expression of CARD11 mRNA and protein in ccRCC were analyzed by public database and immunohistochemistry.The focus of this study is on the epigenomic modifications of CARD11,its expression of ccRCC immunophenotype,and its correlation with response to immunotherapy and targeted therapy.Furthermore,to investigate the mechanism of this molecule’s influence on different biological behaviors of cells,cell tests in vitro have been conducted to observe the impact of its expression level.Results:CARD11 expression was upregulated which may be mainly modified by body methylation and was correlated with poor prognosis in ccRCC.In the tumor microenvironment of ccRCC,CARD11 expression was positively correlated with increased T lymphocyte infiltration and increased expression of inhibitory immune checkpoints.Moreover,ccRCC patients with high CARD11 expression had a better response to immunotherapy and targeted therapy.The knockdown of CARD11 ultimately suppressed the proliferation,migration,and invasion capabilities of ccRCC cells while simultaneously enhancing tumor cell apoptosis.Conclusion:We identified CARD11 as a novel therapeutic biomarker for immunotherapy and targeted therapy in ccRCC. 展开更多
关键词 Clear cell renal cell carcinoma Tumor microenvironment CARD11 Immune checkpoint inhibitor Tyrosine kinase inhibitor
下载PDF
Comparative Analysis of Metro Passengers’Mobility Patterns and Jobs-housing Balance of Metropolitan
9
作者 HUANG Yiman ZHANG Anshu +1 位作者 SU Yuezhu SHI Wenzhong 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第2期1-17,共17页
The advent of the big data era has provided many types of transportation datasets,such as metro smart card data,for studying residents’mobility and understanding how their mobility has been shaped and is shaping the ... The advent of the big data era has provided many types of transportation datasets,such as metro smart card data,for studying residents’mobility and understanding how their mobility has been shaped and is shaping the urban space.In this paper,we use metro smart card data from two Chinese metropolises,Shanghai and Shenzhen.Five metro mobility indicators are introduced,and association rules are established to explore the mobility patterns.The proportion of people entering and exiting the station is used to measure the jobs-housing balance.It is found that the average travel distance and duration of Shanghai passengers are higher than those of Shenzhen,and the proportion of metro commuters in Shanghai is higher than that of Shenzhen.The jobs-housing spatial relationship in Shenzhen based on metro travel is more balanced than that in Shanghai.The fundamental reason for the differences between the two cities is the difference in urban morphology.Compared with the monocentric structure of Shanghai,the polycentric structure of Shenzhen results in more scattered travel hotspots and more diverse travel routes,which helps Shenzhen to have a better jobs-housing balance.This paper fills a gap in comparative research among Chinese cities based on transportation big data analysis.The results provide support for planning metro routes,adjusting urban structure and land use to form a more reasonable metro network,and balancing the jobs-housing spatial relationship. 展开更多
关键词 metro smart card data mobility patterns association rules jobs-housing balance
下载PDF
肺炎支原体CARDS毒素依赖KELED序列调控炎性反应
10
作者 许钰铃 杨婷钰 +1 位作者 宋楠 李洁琼 《标记免疫分析与临床》 CAS 2024年第9期1698-1703,共6页
目的细胞内逆向运输系统是微生物毒素蛋白导致细胞毒性的关键。KELED序列是肺炎支原体CARDS毒素逆向转运至内质网,而后发挥细胞毒性作用的关键氨基酸基序。在小鼠模型中,体外重组的CARDS蛋白可以重现肺炎支原体肺炎患者的特征性症状。然... 目的细胞内逆向运输系统是微生物毒素蛋白导致细胞毒性的关键。KELED序列是肺炎支原体CARDS毒素逆向转运至内质网,而后发挥细胞毒性作用的关键氨基酸基序。在小鼠模型中,体外重组的CARDS蛋白可以重现肺炎支原体肺炎患者的特征性症状。然而,CARDS是否依赖于KELED序列调控肺组织炎性反应仍不清楚。方法在大肠杆菌中表达并纯化CARDS及其KELED序列突变蛋白;随后在细胞水平验证其致空泡化活性;最后,在小鼠模型中评价KELED序列突变的CARDS蛋白是否影响炎性因子的表达以及是否造成肺组织病理学损伤。结果KELED序列氨基酸发生突变,减弱CARDS蛋白致细胞空泡化效应,下调肺组织炎性因子mRNA表达,减轻肺组织的病理学损伤。结论KELED序列对CARDS蛋白致细胞空泡化及炎性损伤活性的维持至关重要。 展开更多
关键词 肺炎支原体 CARDS毒素 KELED序列 炎性反应
下载PDF
急性脑出血患者血清sSRA、NLRC4水平与神经功能缺损程度和预后的关系
11
作者 杨晖 杨海捷 《检验医学与临床》 CAS 2024年第21期3137-3141,3146,共6页
目的探讨急性脑出血患者血清可溶性清道夫受体A(sSRA)、NLR家族含CARD结构蛋白4(NLRC4)水平与神经功能缺损程度和预后的关系。方法选取2020年1月至2023年10月保山市人民医院诊治的198例急性脑出血患者纳入病例组,根据入院时神经功能缺... 目的探讨急性脑出血患者血清可溶性清道夫受体A(sSRA)、NLR家族含CARD结构蛋白4(NLRC4)水平与神经功能缺损程度和预后的关系。方法选取2020年1月至2023年10月保山市人民医院诊治的198例急性脑出血患者纳入病例组,根据入院时神经功能缺损程度分为轻度组、中度组及重度组。随访3个月,根据预后情况分为预后良好组和预后不良组。以同期体检的80例健康体检者为对照组。采用酶联免疫吸附试验检测血清sSRA、NLRC4水平。采用Spearman相关分析血清sSRA、NLRC4水平与急性脑出血患者病情程度的相关性。采用Logistic回归分析急性脑出血患者预后的影响因素。采用受试者工作特征曲线分析血清sSRA、NLRC4对急性脑出血患者预后的评估价值。结果病例组血清sSRA、NLRC4水平分别为(6.04±1.22)μg/L、(215.48±32.23)ng/L,高于对照组的(1.13±0.24)μg/L、(55.59±12.36)ng/mL,差异均有统计学意义(P<0.05)。病情程度越重,血清sSRA、NLRC4水平越高。急性脑出血患者血清sSRA、NLRC4水平与病情严重程度呈正相关(r_(s)=0.667、0.712,P<0.001)。预后不良组格拉斯哥昏迷量表(GCS)评分低于预后良好组,NIHSS评分、颅内血肿量、血清sSRA及NLRC4水平高于预后良好组,差异均有统计学意义(P<0.05)。GCS评分、NIHSS评分、颅内血肿量、血清sSRA及NLRC4是急性脑出血患者预后不良的影响因素(均P<0.05)。血清sSRA、NLRC4联合评估急性脑出血预后不良的曲线下面积(AUC)为0.923(0.882~0.965),大于单一指标的AUC[0.857(0.811~0.896)、0.863(0.834~0.890)]。结论急性脑出血患者血清sSRA、NLRC4水平升高,二者与神经功能缺损程度有关,2项联合对急性脑出血患者预后具有较高的评估价值。 展开更多
关键词 急性脑出血 可溶性清道夫受体A NLR家族含CARD结构蛋白4 神经功能缺损 预后
下载PDF
脓毒症患者血清NLRC3、ECM1表达与急性呼吸窘迫综合征的相关性研究
12
作者 邢小艳 刘力瑞 +2 位作者 白龙 姬妍娜 贺小龙 《实用临床医药杂志》 CAS 2024年第21期38-42,47,共6页
目的探讨脓毒症患者血清NOD样受体家族含CARD结构域蛋白3(NLRC3)、细胞外基质蛋白1(ECM1)表达与急性呼吸窘迫综合征(ARDS)的相关性。方法选取脓毒症患者133例纳入脓毒症组,并选取同时间段体检健康者80例纳入对照组。根据是否并发ARDS分... 目的探讨脓毒症患者血清NOD样受体家族含CARD结构域蛋白3(NLRC3)、细胞外基质蛋白1(ECM1)表达与急性呼吸窘迫综合征(ARDS)的相关性。方法选取脓毒症患者133例纳入脓毒症组,并选取同时间段体检健康者80例纳入对照组。根据是否并发ARDS分为ARDS组(52例)和非ARDS组(81例),采用酶联免疫吸附法检测血清NLRC3、ECM1表达。通过多因素Logistic回归分析筛选脓毒症患者并发ARDS的因素。采用受试者工作特征(ROC)曲线分析血清NLRC3、ECM1表达对脓毒症患者并发ARDS的预测价值。结果与对照组比较,脓毒症组血清NLRC3表达降低,ECM1表达升高,差异有统计学意义(P<0.05)。133例脓毒症患者ARDS发生率为39.10%(52/133)。与非ARDS组比较,ARDS组血清NLRC3表达降低,ECM1表达升高,差异有统计学意义(P<0.05)。脓毒症患者并发ARDS的独立危险因素为序贯器官衰竭评估评分增加、血乳酸升高、ECM1升高,独立保护因素为NLRC3升高(P<0.05)。血清NLRC3、ECM1表达联合预测脓毒症患者并发ARDS的曲线下面积为0.887,大于血清NLRC3、ECM1表达单独预测的0.811、0.792(P<0.05)。结论脓毒症患者血清NLRC3表达降低和ECM1表达升高与并发ARDS密切相关。血清NLRC3、ECM1表达联用对脓毒症患者并发ARDS有较高的预测价值。 展开更多
关键词 脓毒症 NOD样受体家族含CARD结构域蛋白3 细胞外基质蛋白1 急性呼吸窘迫综合征 影响因素
下载PDF
Real-Time Fraud Detection Using Machine Learning
13
作者 Benjamin Borketey 《Journal of Data Analysis and Information Processing》 2024年第2期189-209,共21页
Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit ca... Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit card dataset, I tackle class imbalance using the Synthetic Minority Oversampling Technique (SMOTE) to enhance modeling efficiency. I compare several machine learning algorithms, including Logistic Regression, Linear Discriminant Analysis, K-nearest Neighbors, Classification and Regression Tree, Naive Bayes, Support Vector, Random Forest, XGBoost, and Light Gradient-Boosting Machine to classify transactions as fraud or genuine. Rigorous evaluation metrics, such as AUC, PRAUC, F1, KS, Recall, and Precision, identify the Random Forest as the best performer in detecting fraudulent activities. The Random Forest model successfully identifies approximately 92% of transactions scoring 90 and above as fraudulent, equating to a detection rate of over 70% for all fraudulent transactions in the test dataset. Moreover, the model captures more than half of the fraud in each bin of the test dataset. SHAP values provide model explainability, with the SHAP summary plot highlighting the global importance of individual features, such as “V12” and “V14”. SHAP force plots offer local interpretability, revealing the impact of specific features on individual predictions. This study demonstrates the potential of machine learning, particularly the Random Forest model, for real-time credit card fraud detection, offering a promising approach to mitigate financial losses and protect consumers. 展开更多
关键词 Credit Card Fraud Detection Machine Learning SHAP Values Random Forest
下载PDF
Leveraging Zibo Barbecue’s Success to Develop Hebei’s Culinary Brand:A Strategic Path
14
作者 Chengguo E Yang Yang +1 位作者 Ali Mao Duo Pan 《Proceedings of Business and Economic Studies》 2024年第3期48-52,共5页
In 2023,Zibo barbecue culture exploded across the entire country,allowing people nationwide to experience and enjoy Zibo barbecue.This phenomenon injected new vitality into the economic development of Zibo.To promote ... In 2023,Zibo barbecue culture exploded across the entire country,allowing people nationwide to experience and enjoy Zibo barbecue.This phenomenon injected new vitality into the economic development of Zibo.To promote the economic development of Hebei Province,this paper fully analyzes the reasons behind the popularity of Zibo barbecue,combines these insights with the characteristics of traditional cuisine in Hebei,and draws lessons from Zibo barbecue’s success as a business card for Zibo.The paper then outlines a strategy for building a culinary business card for Hebei. 展开更多
关键词 Zibo barbecue Hebei traditional food Online platform City business card Government-enterprise cooperation
下载PDF
A Study on the Problem of Employee Punch Card Substitution in Enterprise Management:The Case of Jingdong Enterprise
15
作者 Naiwen Zhang Yunfan Fan Binwei Zhang 《Proceedings of Business and Economic Studies》 2024年第5期218-226,共9页
With economic progress and the continuous advancement of science and technology,the issue of employees substituting punch cards has gradually become a significant challenge in enterprise management.The purpose of this... With economic progress and the continuous advancement of science and technology,the issue of employees substituting punch cards has gradually become a significant challenge in enterprise management.The purpose of this paper is to discuss the causes,effects,and countermeasures of the employee punch card phenomenon,with the aim of providing effective management recommendations for Chinese enterprises.In practice,enterprises should flexibly apply the countermeasures proposed in this paper according to their specific circumstances to prevent substitute punch card incidents and improve overall management efficiency. 展开更多
关键词 Employee punch card issue Enterprise management Economic impact Technical solutions Cost-benefit analysis
下载PDF
NOD2/CARD15基因突变与中国人克罗恩病相关性的研究 被引量:20
16
作者 龙靖华 智发朝 +7 位作者 张迎春 张以洋 钟长青 姚国鹏 陈正彦 林勇 智佳 关婧 《胃肠病学》 2007年第6期327-330,共4页
背景:近年多项研究证明NOD2/CARD15基因序列的单核苷酸多态性(SNP)与西方白种人克罗恩病(CD)明显相关,其中3个SNP(R702W、G908R和3020insC)与CD的相关性尤为显著。目的:探讨NOD2/CARD15基因SNP与中国人CD发病的相关性及其与CD临床特点... 背景:近年多项研究证明NOD2/CARD15基因序列的单核苷酸多态性(SNP)与西方白种人克罗恩病(CD)明显相关,其中3个SNP(R702W、G908R和3020insC)与CD的相关性尤为显著。目的:探讨NOD2/CARD15基因SNP与中国人CD发病的相关性及其与CD临床特点的关系。方法:选取临床资料完整的CD患者48例、溃疡性结肠炎(UC)患者和健康对照者各50例,提取人血白细胞基因组DNA,经聚合酶链反应(PCR)扩增NOD2基因全部12对外显子,纯化后直接测序,根据结果分析其突变与CD病变特点的关系。结果:CD组、UC组和健康对照组均未检出3个西方人常见的NOD2/CARD15基因多态性位点。CD组的P268S突变率显著高于UC组和健康对照组(P<0.05)。5例P268S突变的CD患者病变均位于回肠(P<0.01),4例发病年龄≤20岁(P<0.01),且均并发肠腔狭窄(P<0.01)。结论:中国人CD患者中存在NOD2/CARD15基因P268S突变,且与患者的发病年龄、病变部位和并发症相关,有必要对其功能作进一步探讨。 展开更多
关键词 多态性 单核苷酸 CROHN病 基因 NOD2/CARD15
下载PDF
网站个性化服务的研究 被引量:12
17
作者 杨武剑 王泽兵 +1 位作者 冯雁 武新玲 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第3期278-282,共5页
利用Web数据挖掘技术,对用户未来的访问进行预测和推荐,是实现网站柔性个性化服务的研究方向之一.笔者通过对网站个性化服务相关技术的研究,改进了对Web服务器用户访问日志信息进行聚类分析的关联数据竞争聚类(competitiveagglomeration... 利用Web数据挖掘技术,对用户未来的访问进行预测和推荐,是实现网站柔性个性化服务的研究方向之一.笔者通过对网站个性化服务相关技术的研究,改进了对Web服务器用户访问日志信息进行聚类分析的关联数据竞争聚类(competitiveagglomerationforrelationdata,CARD)算法,并在此基础上构建了相应的实验模型.CARD算法是CA算法的一种改进算法,适合于处理没有明显特征的Web数据.试验是建立在真实的Web日志上的,实验证明该算法具有较好的聚类效果和适用度. 展开更多
关键词 数据挖掘 个性化网站 个性化服务 关联数据竞争聚类算法 Web用户模式挖掘 CARD算法
下载PDF
P268S突变型NOD2/CARD15真核表达载体的构建及其体外表达 被引量:6
18
作者 钟长青 智发朝 +2 位作者 王继德 龙靖华 张迎春 《胃肠病学》 2007年第6期331-334,共4页
背景:NOD2/CARD15基因序列单核苷酸多态性(SNP)与欧美人群的克罗恩病(CD)明显相关,其中R702W、G908R和3020insC3个SNP位点与CD的相关性尤为显著。而日本、韩国以及我国香港和浙江地区的研究均未发现上述3个SNP的改变,但最近研究发现了... 背景:NOD2/CARD15基因序列单核苷酸多态性(SNP)与欧美人群的克罗恩病(CD)明显相关,其中R702W、G908R和3020insC3个SNP位点与CD的相关性尤为显著。而日本、韩国以及我国香港和浙江地区的研究均未发现上述3个SNP的改变,但最近研究发现了可能与中国人CD相关的P268S突变。目的:构建P268S突变型NOD2/CARD15真核表达载体和体外转染体系,为研究突变型NOD2/CARD15的功能提供实验基础。方法:应用定点诱变技术构建P268S突变型NOD2/CARD15真核表达载体,以阳离子脂质体介导体外转染技术瞬时转染人胚肾细胞HEK293T,以蛋白质印迹法和逆转录聚合酶链反应(RT-PCR)检测HEK293T细胞NOD2/CARD15的表达。结果:经克隆、酶切、测序证实获得P268S突变型NOD2/CARD15基因,突变载体转入HEK293T细胞后,NOD2/CARD15有效表达。结论:成功构建了P268S突变型NOD2/CARD15真核表达载体,阳离子脂质体是人胚肾细胞有效的体外转染体系。 展开更多
关键词 基因 NOD2/CARD15 诱变 定点 转染
下载PDF
Cloud Card对个人学习空间建设的新启示 被引量:9
19
作者 郁晓华 黄沁 +1 位作者 张莹渊 祝智庭 《中国电化教育》 CSSCI 北大核心 2016年第2期41-48,共8页
近年来,个人学习空间建设走向实践研究,旨在为学习者提供智慧化学习环境。但由于数字资源组织仍然杂乱无序、适应性和联通性较差,学习工具难以满足学习者个性化需求,基于功能模块的数据服务难以支持真实性评价等原因,个人学习空间取得... 近年来,个人学习空间建设走向实践研究,旨在为学习者提供智慧化学习环境。但由于数字资源组织仍然杂乱无序、适应性和联通性较差,学习工具难以满足学习者个性化需求,基于功能模块的数据服务难以支持真实性评价等原因,个人学习空间取得的阶段性成效与预期尚存在较大距离。该文借鉴深层链接技术在Google、Twitter、Facebook等商业广告领域的成功经验,尝试将其新的发展延伸——Cloud Card引入到个人学习空间建设中。在对Cloud Card进行技术追溯和需求分析的基础上,详细阐述了Cloud Card的UI关联展现、流线型服务组织模式、底层隐形数据传递等特点,并从工具服务的情境化组织、学习过程的追踪、面向过程的真实性评价三个方面,重点探讨了Cloud Card在教育应用中的可行性和关键设计要素,以期能为"人人通"的实现与发展提供一种新的理念和技术路线,为个人学习空间建设助力。 展开更多
关键词 CLOUD CARD 个人学习空间 深层链接技术 教学情境 真实评价 人人通
下载PDF
一个面向智能电话的移动可信平台设计 被引量:6
20
作者 杨健 汪海航 +1 位作者 Fui Fui Wong 于皓 《计算机科学》 CSCD 北大核心 2012年第8期20-25,共6页
由于手机病毒或设备失窃,导致手机上的私密数据面临泄漏的危险。为了满足移动平台的安全需求,TCG的MPWG提出移动可信平台规范。然而MPWG并没有明确规定特定的技术方法来实现移动可信模块(MTM),现有研究中没有整体的可实际部署于智能手... 由于手机病毒或设备失窃,导致手机上的私密数据面临泄漏的危险。为了满足移动平台的安全需求,TCG的MPWG提出移动可信平台规范。然而MPWG并没有明确规定特定的技术方法来实现移动可信模块(MTM),现有研究中没有整体的可实际部署于智能手机环境的MTM平台框架性设计,对可信软件栈(TSS)也没有可以实施的详细的部署方案。设计了一个面向智能手机的移动可信平台服务模型,它将基于TrustZone的纯软件MTM实现与基于Java Card的智能卡MTM实现结合起来构建两个可信引擎。提出其中可信构建块的部署流程并对其安全性进行了分析。 展开更多
关键词 移动可信平台模块 TRUSTZONE 智能卡 Java CARD 可信软件栈(TSS) 软件部署
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部