期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CARS-SPA的苹果可溶性固形物可见/近红外光谱在线检测 被引量:3
1
作者 许文丽 药林桃 +3 位作者 孙通 胡田 胡涛 刘木华 《食品工业科技》 CAS CSCD 北大核心 2014年第22期61-64,共4页
采用CARS(competitive adaptive reweighted sampling)联合连续投影算法(SPA)方法筛选苹果可见/近红外光谱的特征变量,继而联合多种不同建模方法建立苹果可溶性固形物(SSC)预测模型,并对预测模型进行对比研究。研究结果显示,采用CARS-SP... 采用CARS(competitive adaptive reweighted sampling)联合连续投影算法(SPA)方法筛选苹果可见/近红外光谱的特征变量,继而联合多种不同建模方法建立苹果可溶性固形物(SSC)预测模型,并对预测模型进行对比研究。研究结果显示,采用CARS-SPA联合筛选出的31个变量,通过采用PLS建立苹果SSC的可见/近红外光谱在线检测模型性能最稳定,其变量数仅为原始光谱的1.69%,预测集的相关系数和均方根误差分别为0.936和0.351%。研究表明采用CARS-SPA能有效提取苹果SSC的光谱特征变量,能有效简化模型并提高模型精度。 展开更多
关键词 可见/近红外光谱 苹果 cars-spa PLS 可溶性固形物
下载PDF
湖滨绿洲棕漠土有机碳含量高光谱估算 被引量:1
2
作者 樊泳灼 李新国 《江苏农业学报》 CSCD 北大核心 2023年第6期1341-1348,共8页
以博斯腾湖湖滨绿洲为研究区,利用实测棕漠土有机碳含量与高光谱(350~2 500 nm)数据,应用竞争性自适应重加权采样算法(CARS)、连续投影算法(SPA)、竞争性自适应重加权采样-连续投影算法(CARS-SPA)筛选棕漠土有机碳含量响应的高光谱特征... 以博斯腾湖湖滨绿洲为研究区,利用实测棕漠土有机碳含量与高光谱(350~2 500 nm)数据,应用竞争性自适应重加权采样算法(CARS)、连续投影算法(SPA)、竞争性自适应重加权采样-连续投影算法(CARS-SPA)筛选棕漠土有机碳含量响应的高光谱特征波段,分别采用全波段和特征波段结合随机森林(RF)模型构建棕漠土有机碳含量估算模型。结果表明:博斯腾湖湖滨绿洲棕漠土0~50.0 cm土层有机碳含量为1.40~40.92 g/kg,平均值为14.20 g/kg,变异系数为55.54%,呈中等变异水平。CARS、SPA、CARS-SPA等算法筛选出的棕漠土有机碳含量响应特征波段分别为122个、11个和10个。基于CARS-SPA算法筛选出的特征波段数据输入RF模型估算效果最好,验证集检验的决定系数(R^(2))、相对分析误差(RPD)、均方根误差(RMSE)分别为0.85、2.59和2.72 g/kg,该方法能有效减少光谱数据冗余、提高模型估算精度和运行效率。本研究结果为研究区棕漠土有机碳含量的估算提供参考。 展开更多
关键词 土壤有机碳含量 棕漠土 高光谱 竞争性自适应重加权采样-连续投影算法(cars-spa) 随机森林
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部